Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-16T23:14:51.767Z Has data issue: false hasContentIssue false

Third-Order Optical Nonlinearities of Quantized CdS and Metal Ultrafine Particles Co-Dispersed in Polymer Matrices – Surface Modification Effect

Published online by Cambridge University Press:  28 February 2011

Hiroshi Yao
Affiliation:
Central Research Institute, Mitsui Toatsu Chemicals Inc., 1190 Kasama-cho, Sakae-ku, Yokohama 247, Japan
Toyoharu Hayashi
Affiliation:
Central Research Institute, Mitsui Toatsu Chemicals Inc., 1190 Kasama-cho, Sakae-ku, Yokohama 247, Japan
Get access

Abstract

Quantized CdS particles of about 60 A in diameter were prepared by an organo-sol method in the presence of PVP (poly(N-vinyl-2-pyrrolidone)), and this new method could make the CdS ultrafine particles densely dispersed in PHEMA (poly(2-hydroxyethyl methacrylate)) host films. The values of | x(3) |/α (third-order optical nonlinear susceptibility per unit absorption coefficient) were obtained (2.0 × 10-10 esu· cm at 460 nm and 2.7 × 10-10esu · cm at 470 nm) using a nanosecond DFWM technique. An enhancement of non-linearity was observed for the first time when Ag particles or Ag+ ion were co-dispersed with the CdS particles in small amounts. The addition of 8.57 wt% Ag particles, or 4.28 wt% Ag+ ion in the ratio to CdS made | x(3) |/α enhanced to be 3.9 × 10-10 esu· cm, or 4.1 × 10-10 esu· cm, respectively. The surface modification by the formation of Ag2S on the surface of CdS colloids is believed to be responsible for this enhancement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmitt-Rink, S., Miller, D.A.B., Chemla, D.S., Phys. Rev. B 35, 8113 (1987).Google Scholar
2. Hanamura, E., Phys. Rev. B 37, 1273 (1988).Google Scholar
3. Hanamura, E., Opt. Quantum Electron. 21, 441 (1989).Google Scholar
4. Steigerwald, M.L., Brus, L.E., Acc. Chem. Res. 23, 183 (1990).Google Scholar
5. Wang, Y., Herron, N., J. Phys. Chem. 95, 525 (1991).Google Scholar
6. Misawa, K., Yao, H., Hayashi, T., Kobayashi, T., J. Chem. Phys. 94, 4131 (1991).Google Scholar
7. Hayashi, T., Yao, H., Takahara, S., Mizuma, K., J. Phys. Chem. 96, 2866 (1992).Google Scholar
8. Rossetti, R., Ellison, J.L., Gibson, J.M., Brus, L.E., J. Chem. Phys. 80, 4464 (1984).Google Scholar
9. Ramsden, J.J., Webber, S.E., Gratzel, M.J., J. Phys. Chem. 89, 2740 (1985).Google Scholar
10. Misawa, K., Yao, H., Hayashi, T., Kobayashi, T., Chem. Phys. Lett. 83, 113 (1991).Google Scholar
11. Jain, R.K., Klein, M.B., in Optical Phase Conjugation, edited by Fisher, R.A. (Academic Press, Inc., San Diego, 1983), pp. 307415.Google Scholar
12. Sakai, T., Kawabe, Y., Ikeda, H., Kawasaki, K., Appl. Phys. Lett. 56, 411 (1990).Google Scholar
13. Tsang, J.C., Kirtley, J., Solid State Commun. 30, 617 (1979).Google Scholar
14. Creighton, J.A., Blatchford, C.G., Albrecht, M.G., J. Chem. Soc. Faraday Trans. 75, 790 (1979).Google Scholar
15. Spanhel, L., Haase, M., Weiler, H., Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987).Google Scholar
16. Dannhauser, T., O'neil, M., Johansson, K., Whitten, D., McLendon, G., J. Phys. Chem. 90, 6074 (1986).Google Scholar
17. Hilinski, E.F., Lucas, P.A., Wang, Y., J. Chem. Phys. 89, 3435 (1988).Google Scholar