Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T04:13:56.087Z Has data issue: false hasContentIssue false

THE THIRD GENERATION OF THE DIRAC CONE AS A PROOF OF STACKED 2D ELECTRON SYSTEMS IN IRON PNICTIDES

Published online by Cambridge University Press:  16 March 2012

Koichi Kusakabe*
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
Get access

Abstract

The nodal SDW order parameter on a cylindrical Fermi surface is thought to create the Dirac cone in the metallic ground state of iron pnictides and iron chalcogenides. Confirming appearance of the Dirac cone in DFT-GGA solutions of FeSe, we discuss origin of the bulk SDW order parameter in the stacked two-dimensional electronic system. In a layered system with vanishingly small inter-layer single-particle hopping processes, the exchange channels derived for the inter-plane magnetic interaction is the super-exchange counterpart of the two-particle Coulomb scattering for the pair-hopping channel in the layered superconductivity. The fluctuation reference method of the multi-reference density functional theory concludes existence of the inter-layer super-exchange interaction by the Coulomb off-diagonal elements among orbitals in the semi-metallic band structure. Thus a proof of 2D nature of the third generation Dirac cone in iron pnictides induced by SDW also promotes understanding of the high-temperature superconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Richard, P., Nakayama, K., Sato, T., Neupane, M., Xu, Y.-M., Bowen, J.H., Chen, G.F., Luo, J.L., Wang, N.L., Dai, X., Fang, Z., Ding, H., and Takahashi, T., Phys. Rev. Lett. 104, 137001 (2010).Google Scholar
2. Huynh, K. K., Tanabe, Y., and Tanigaki, K., Phys. Rev. Lett. 106, 217004 (2011).Google Scholar
3. Ran, Y., Wang, F., Zhai, H., Vishwanath, A., and Lee, D.-H., Phys. Rev. B 79, 014505 (2009).Google Scholar
4. Analytis, J.G., McDonald, R.D., Chu, J.-H., Riggs, S.C., Bangura, A.F., Kucharczyk, C., Johannes, M., and Fisher, I.R., Phys. Rev. B 80, 064507 (2009).Google Scholar
5. Kusakabe, K., J. Phys. Soc. Jpn. 78, 114716 (2009).Google Scholar
6. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
7. Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
8. Kusakabe, K. and Maruyama, I., J. Phys. A: Math. Theor. 44, 135305 (2011).Google Scholar
9. Kusakabe, K., Suzuki, N., Yamanaka, S., and Yamaguchi, K., J. Phys.: Condens. Matter 19, 445009 (2007).Google Scholar
10. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
11. Giannnozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulato, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
12. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar