Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T17:39:48.808Z Has data issue: false hasContentIssue false

Thin Mo Films Deposited and Analyzed Using Sub-Kev Noble Gas Ions

Published online by Cambridge University Press:  21 February 2011

Jan Van Der Kuur
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Ernst-Jan E. Melker
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Tom P. Huijgen
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Wilbert H.B. Hoondert
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Gerard T.W.M. Bekking
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Arie Van Den Beukel
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Barend J. Thijsse
Affiliation:
Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Get access

Abstract

Using He+ as probe particles, we have studied point defects in Mo thin films (5-1000 Å) deposited without and with Ar+ ion beam assistance (0.2–22 eV per Mo atom). It is found that the net effect of the ion beam is to produce rather than to annihilate point defects. Ar incorporation is only slight (-10-4). Annealing of the films leads to the thermal production of polyvacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smidt, F.A., Int. Mater. Reviews 35, 61 (1990).Google Scholar
2 Hirvonen, J., Mat. Sci. Reports 6, 215 (1991).Google Scholar
3 van Veen, A., Mat. Sci. Forum 15–18, 3 (1987).Google Scholar
4 Huijgen, T.P., Hoondert, W.H.B., Seijbel, L.J., and Thijsse, B.J., Nucl. Instr. Meth. B59/60, 150 (1991).Google Scholar
5 Biersack, J.P. and Haggmark, L.G., Nucl. Instr. Meth. 174, 257 (1980).Google Scholar
6 McNabb, A. and Foster, P.K., Am. Inst. Mat. Eng. 227, 618 (1963). The computational procedures are outlined in W.H.B. Hoondert, thesis, Delft U. of Tech. (1993).Google Scholar
7 van Veen, A., Evans, J.H., Buters, W.Th.M., and Caspers, L.M., Rad. Eff. 78, 53 (1983).Google Scholar
8 Buters, W. Th. M. and van den Beukel, A., J. Nucl. Mat. 137, 57 (1985).Google Scholar
9 van Veen, A., Buters, W.Th.M., Armstrong, T.R., Nielsen, B., Westerduin, K.T., and Caspers, L.M., Nucl. Instr. Meth. 209/210, 1055 (1983).Google Scholar