Skip to main content Accessibility help

Thin Layer Electrochemical Studies of ZnS, ZnSe, and ZnTe Formation by Electrochemical Atomic Layer Epitaxy (ECALE)

  • Lisa P. Colletti (a1), Sajan Thomas (a1), Elvin M. Wilmer (a1) and John L. Stickney (a1)


Thin-layer electrochemical studies of the underpotential deposition (UPD) of Zn, Te, Se, and S on polycrystalline Au substrates have been performed. These studies were initiated to investigate the electrodeposition of ZnTe, ZnSe, and ZnS by electrochemical ALE (ECALE). Zn UPD on Au begins at -0.5 V and results in a coverage of 0.47 monolayer (ML). Te and Se atomic layers were formed using a two step process where bulk chalcogenide was removed by reduction, leaving the atomic layer. The reduction of the last atomic layer of Te or Se was not observed, regardless of how negative the potential was scanned. Sulfur atomic layers were spontaneously deposited below -0.6 V from a sulfide solution. Thermodynamic effects are clearly evident during the first monolayer of deposition. Zinc deposition onto Te, Se, and S coated electrodes occurs at progressively more positive potentials as the stability of the zinc compounds increase.

This initial information was used to develop ECALE cycles for the compounds, and thin-films were formed by repeated application of the cycles. The dependence of the deposit coverage on the deposition potentials was examined and found to display the characteristic “S” curve of a surface limited process. In addition, the dependence of the coverage on the number of ECALE cycles performed was found to be near the ideal 0.5 ML per cycle for ZnSe and ZnS. The ZnTe coverage per cycle was less than expected indicating that further optimization of deposition conditions is needed.



Hide All
[1] Rajeshwar, K., Advanced Materials, 4, 23 (1992).
[2] Bhargava, R.N., J. Crystal Growth, 59, 15 (1982).
[3] Gebhart, W., Materials Science and Engineering, Bll, 1 (1992).
[4] Bhargava, R.N., J. Crystal Growth, 117, 894 (1992).
[5] Neumann-Spallart, M. and Konigstein, C., Thin Solid Films, 265, 33 (1995).
[6] Singh, K. and Rai, J.P., J. Mat. Sci. Lett., 4, 1401 (1985).
[7] Roy, C.B., Nandi, D.K., and Mahapatra, P.K., Electrochim. Acta, 31, 1227 (1986).
[8] Singh, K. and Rai, J.P., Bull. Mater. Sci., 10, 353 (1988).
[9] Singh, K. and Rai, J.P., Ind. J. Chem., 28A, 557 (1989).
[10] Rai, J.P. and Singh, K., Ind. J. Chem., 32A, 376 (1993).
[11] Rai, J.P., Sol. Eng. Mat. Sol. Cells, 30, 119 (1993).
[12] Ohno, I., Wantanabe, K., and Numata, H., in Electrochemically Deposited Thin Films, Paunovic, M., Ohno, I., and Miyoshi, Y., Editors, PV 93–26, p. 108, The Electrochemical Society Proceedings Series, Pennington, NJ (1993).
[13] Singh, K. and Pathak, R.K., Electrochim. Acta, 39, 2693 (1994).
[14] Natarajan, C., Sharon, M., Levy-Clement, M., Neumanne-Spallart, M., Thin Solid Films, 237, 118 (1994).
[15] Lokhande, C.D., Jadhav, M.S., Pawar, S.H., J. Electrochem. Soc, 136, 2756 (1989).
[16] Sanders, B.W. and Kitai, A.H., J. Crystal Growth, 100, 405 (1990).
[17] Mahalingam, T. and Sanjeeviraja, C., Phys. Stat. Sol. (A), 129, K89 (1992).
[18] Gregory, B.W., Suggs, D.W., and Stickney, J.L., J. Electrochem. Soc, 138, 1279 (1991).
[19] Gregory, B.W. and Stickney, J.L., J. Electroanal. Chem., 300, 543 (1991).
[20] Bedair, S., Atomic Layer Epitaxy, Elsevier, Amsterdam, (1993).
[21] Kuech, T.F., Dapkus, P.D., Aoyagi, Y., Atomic Layer Growth and Processing, Materials Research Society, Pittsburg (1991).
[22] Suntola, T. and Antson, J., U.S. Patent 4 058 430 (1977).
[23] Kolb, D.M. in Advances in Electrochemistry and Electrochemical Engineering, Vol. 11, Gerischerand, H., Tobias, C.W., Editors, Wiley, New York, 1978, p. 125.
[24] Colletti, L.P., Slaughter, R., and Stickney, J.L., Soc, J.. Inform. Disp., submitted.
[25] Colletti, L.P. and Stickney, J.L., in preparation.
[26] Hubbard, A.T., Crit. Rev. Anal. Chem., 3, 201 (1973).
[27] Adzic, G., McBreen, J., Chu, M.G., J. Electrochem. Soc., 128, 1691 (1981).
[28] Chu, M.G., McBreen, J., Adzic, G., J. Electrochem. Soc., 128, 2281 (1981).
[29] Despic, A.R., and Pavlovic, M.G., Electrochim. Acta, 27, 1539 (1982).
[45] Nasar, A. and Shamsuddin, M., Thermochim. Acta, 205, 157 (1992).
[30] Tadjeddine, A. and Tourillon, G., Elektrokhimiya, 29, 63 (1993)
[31] Quaiyyum, M.A., Aramata, A., Moniwa, S., Taguchi, S., and Enyo, M., J. Electroanal. Chem., 373, 61 (1994).
[32] Aramata, A., Quaiyyum, M.A., Balais, W.A., Atoguchi, T., and Enyo, M., J. Electroanal. Chem., 338, 367 (1992).
[33] Taguchi, S., Aramata, A., Quaiyyum, M.A., and Enyo, M., J. Electroanal. Chem., 374, 275 (1994).
[34] Taguchi, S. and Aramata, A., J. Electroanal. Chem., 396, 131 (1995).
[35] El-Shafei, A.A., J. Electroanal. Chem., 380, 269 (1995).
[36] Von Schultze, J.W., Koppitz, F.D., and Lohrengel, M.M., Ber Bunsenges. Phys. Chem., 78, 693 (1974).
[37] Colletti, L.P., Teklay, D., and Stickney, J.L., J. Electroanal. Chem., 369, 145, (1994).
[38] Hamelin, A., J. Electroanal. Chem., 142, 299 (1982).
[39] Kolb, D.M. and Schneider, J., Electrochim. Acta, 31, 929 (1986).
[40] Schneider, J. and Kolb, D.M., Surf. Sci., 193, 579 (1988).
[41] Gao, X., Hamelin, A., and Weaver, M.J., Phys. Rev. Lett., 67, 618 (1991).
[42] Buckley, A.N., Hamilton, I.C., and Woods, R., J. Electroanal. Chem., 216, 213 (1987).
[43] Hamilton, I.C. and Woods, R., J. Appl. Electrochem., 13, 783, (1983).
[44] Gao, X., Zhang, Y., and Weaver, M.J., Langmuir, 8, 668 (1992).
[45] Nasar, A. and Shamsuddin, M., Thermochim. Acta, 205, 157 (1992).

Thin Layer Electrochemical Studies of ZnS, ZnSe, and ZnTe Formation by Electrochemical Atomic Layer Epitaxy (ECALE)

  • Lisa P. Colletti (a1), Sajan Thomas (a1), Elvin M. Wilmer (a1) and John L. Stickney (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed