Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-21T19:31:30.375Z Has data issue: false hasContentIssue false

Thin Film Epitaxial Oxide Optical Waveguides

Published online by Cambridge University Press:  21 February 2011

D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
F. Armani-Leplingard
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
J. J. Kingston
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, USA
Get access

Abstract

One of the most challenging applications of ferroelectric thin films is the formation of technologically practical optical waveguideing devices, particularly in the context of a dynamically changing environment where competing light sources and optical materials simultaneously undergo rapid improvement. In order to assess the prospects of this technology, a fundamental understanding of waveguide loss is being pieced together. This includes the relative contributions of surface scattering, and grain boundary scattering to optical losses. With computational models, it is possible to predict the surface losses from measured topographic data. This tool provides a method to probe the residual effects of grain boundaries, defects and impurities on optical losses. A comparative anatomy of various thin film structures and their loss characteristics will be provided in the context of these experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lipscomb, G. F., Lytel, R. S., Ticknor, A. J., Kenny, J., Van Eck, T. E., Girton, D. G., and Binkley, E, Proc. Mater. Res. Soc. Symp., 228, 15 (1992).Google Scholar
2 Risk, W. P., Optics and Photonics News, 1(5), 10 (1990).Google Scholar
3 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys, Lett., 64, 1687 (1994).Google Scholar
4 Fork, D. K., Armani-Leplingard, F., and Kingston, J. J., proceedings of the Fall 1994 Symposium on Ferroelectric Thin Films IV, Nov. 29, San Francisco, CA.Google Scholar
5 Nashimoto, K., Fork, D. K., and Geballe, T. H., Appl. Phys. Lett., 60, 1199 (1992).Google Scholar
6 Hsu, W-Y, and Raj, R., Appl. Phys. Lett., 60, 3105 (1992).Google Scholar
7 Fork, D. K. and Anderson, G. B., Appl. Phys. Lett. 63, 1029 (1993).Google Scholar
8 Hung, L. S., Agostinelli, J. A., Mir, J. M., and Zheng, L. R., Appl. Phys. Lett., 62, 3071 (1993).Google Scholar
9 Gutmann, R., Huliger, J., Hauert, R., and Moser, E. M., J. Appl. Phys., 70, 2648 (1991).Google Scholar
10 Thöny, S. Schwyn, Lehman, H. W., and Günter, P., Appl. Phys. Lett., 61, 373 (1992).Google Scholar
11 Graettinger, T. M., Rou, S. H., Ameen, M. S., Auciello, O., and Kingon, A. I., Appl. Phys. Lett., 58, 1964 (1991).Google Scholar
12 Marcuse, D., Theomy of Dielectric Optical Wiveguides, (Academic Press, New York, 1974), Chap. 3.Google Scholar
13 Marcuse, D., Bell Sys. Tech. J., p. 3187, Dec. 1969.Google Scholar
14 pseudo-even and pseudo-odd designate modes which are truly odd or even in the limit of a symmetric slab guide.Google Scholar
15 Fork, D. K., Armani-Leplingard, F., and Kingston, J. J., proceedings of the 6th International Symposium on Integrated Ferroelectrics, vol.6, part 1, March 1994, Monterey CA.Google Scholar
16 Kingston, J. et al. to be published.Google Scholar