Skip to main content Accessibility help
×
Home

Thermotracttve Titanium-Nickel thin Films Formicroelectromechanical Systems and Active Composites

  • D. S. Grummon (a1) and T. J. Pence (a1)

Abstract

Thin films of thermoelastic titanium-nickel are of interest as a material basis for force-producing elements in microelectromechanical systems, and for active phases in mechanically-adaptive composite materials. The successful introduction of this material system into such application areas will depend on development of reliable thin film deposition protocols, together with the refinement of analytical models which successfully predict the response of active microstructures to a variety of dynamic thermal and mechanical stimuli. In the present paper we review some of our recent experimental and theoretical work which bear on these problems. With respect to thin film fabrication techniques we focus on problems of composition control and the manipulation of microstructure, with particular emphasis on opportunities afforded by amorphous precursor phases formed during low temperature processing, and the fine-grained, thermally stable crystalline microstructures obtainable using hot-substrate deposition. The films resulting from either approach retain the important thermomechanical response features of the well-known bulk-alloy system: shape memory and transformational superelasticity. The response can be modeled in terms of a continuum description augmented with internal variables that track fractional partitioning of the material between austenite and variants of the martensite.

Copyright

References

Hide All
[1] Wolf, R. H. and Heuer, A. H., “TiNi (Shape-Memory) Films on Silicon for MEMS Applications”, J. Microelec-tromenchanical Systems 4, 1057 (1995).
[2] Hou, Li and Grammon, D. S., “Transformational Superelasticity in Sputtered Titanium-Nickel Thin Films”, Scripta Metallurgica 33, 989995 (1995).
[3] Miyazaki, S., Hashinaga, T., Yumikura, K., Horikawa, H., Ueki, T. and Ishida, A., Proc. 1995 Amer, N.. Conf. On Smart Structures and Materials, (1995).
[4] Grammon, D. S., Nam, S. and Chang, L., “Effect of Superelastically Deforming NiTi Surface Microalloys on Fatigue Crack Nucleation in Copper”, Proc. Mat. Res. Soc. 246, pp. 259264 (1992).
[5] Grammon, D. S., Hou, Li and Pence, T. J., “Progress on Sputter-Deposited Thermotractive Titanium-Nickel Films”, J. de Physique IV, C8 pp 665670 (1995).
[6] Hou, Li, pence, T. J. and Grammon, D. S., “Structure and Thermal Stability in Titanium-Nickel Thin Films Sputtered at Elevated Temperature on Organic and Polymeric Substrates”, Mat. Res. Soc. Proc. 360, pp 369374 (1995).
[7] Lee, Jiun-Chung, Master's Thesis, Michigan State University, 1994.
[8] Kay, E., Adv. Electronics and Electron Physics, 17 p245 (1962).
[9] Chang, L. and Grammon, D. S., “Structure Evolution in Sputtered Thin Films of Titanium-Nickel, Part I - Diffusive Transformations”, Philosophical Magazine A, 1996, in press.
[10] Chang, L. and Grummon, D. S., “Structure Evolution in Sputtered Thin Films of Titanium-Nickel, Part-II - Dis-placive Transformations”, submitted to Philosophical Magazine A, 1996, in press.
[11] Chang, L., Ph. D. Thesis, Michigan State University, 1993.
[12] Li, Hou, Grummon, D. S. and Pence, T. J., “Transformational Superelasticity in Nanophase Sputtered Deposits of Equiatomic Titanium-Nickel”, 9th Annual University/Industry Symposium, MSU Center for Fundamental Materials Research, Apr. 10, 1995.
[13] Brinson, L.C. and Huang, M.S., J. Intell. Mater. Syst. and Struct. 7, 108114 (1996).
[14] Pence, T.J., Grummon, D.S. and Ivshin, Y. in Mechanics of Phase. Transformations and Shape Memory Alloys, ed. Brinson, L.C. and Moran, B., (ASME AMD vol. 189, 1994), p. 4558.
[15] Wu, X., Pence, T.J. and Grummon, D.S., this symposium.

Thermotracttve Titanium-Nickel thin Films Formicroelectromechanical Systems and Active Composites

  • D. S. Grummon (a1) and T. J. Pence (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed