Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T10:08:29.806Z Has data issue: false hasContentIssue false

Thermoelectroc Power for Phase Transformation Study in Metallic Alloys

Published online by Cambridge University Press:  21 February 2011

R. Borrelly
Affiliation:
Groupe d'Etudes de Mé Métallurgie Physique et de Physique des Matériaux, LA 341, INSA de LYON, Bat 502, 69621, Villeurbanne
P. Merle
Affiliation:
Groupe d'Etudes de Mé Métallurgie Physique et de Physique des Matériaux, LA 341, INSA de LYON, Bat 502, 69621, Villeurbanne
J. Merlin
Affiliation:
Groupe d'Etudes de Mé Métallurgie Physique et de Physique des Matériaux, LA 341, INSA de LYON, Bat 502, 69621, Villeurbanne
J.M. Pelletier
Affiliation:
Groupe d'Etudes de Mé Métallurgie Physique et de Physique des Matériaux, LA 341, INSA de LYON, Bat 502, 69621, Villeurbanne
G. Vigier
Affiliation:
Groupe d'Etudes de Mé Métallurgie Physique et de Physique des Matériaux, LA 341, INSA de LYON, Bat 502, 69621, Villeurbanne
Get access

Abstract

Recent experiments have proved the efficiency of T.E.P. measurements in phase transformation studies. The main features of the technique are presented and two particular examples of application are given (influence of plastic deformation on short range ordering (S.R.O.) and study of dissolution of the equilibrium Θ phase in Al-Cu alloys).

Since the first studies [1] only very few attempts have been made to use thermoelectrical power measurements (T.E.P.) to characterize the evolution of an alloy during phase transformation. However, in spite of the complexity of the theoretical interpretations, T.E.P. measurements can give valuable informations on the microstructure of the material, sometimes with more easiness or more precision than with other techniques or even informations which would be impossible to obtain by another way.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crussard, C., Aubertin, F. Rev. Met. 45,10 (1980)Google Scholar
2. Barnard, R.D. “Thermoelectricity in Metals and Alloys”, Taylor and Francis ed. 1972Google Scholar
3. Huebner, R.P. Solid State Phys. 27,63 (1972)Google Scholar
4. Borrelly, R.,Pelletier, J.M., P.F. Gobin Acta Met. 26, 1863 (1978)Google Scholar
5. Mai, C., Merlin, J., Merle, P., Livet, G. Same conference.Google Scholar
6. Pelletier, J.M., Merlin, J., Borrelly, R. Mat. Sci. Eng. 33,95 (1978)Google Scholar
7. Pelletier, J.M., Vigier, G., Merlin, J., Borrelly, R., Fouquet, F.,Merle, P. to be publishedGoogle Scholar
8. Pelletier, J.M., Vigier, G., Mai, C. same conferenceGoogle Scholar
9. Pelletier, J. M., Borrelly, R. C.R. Acad. Sci. Paris 284, 353 (1977)Google Scholar
10. Damask, A.C., J. Appl. Phys. 27,610 (1956)Google Scholar
11. Youssef, T.H., Czech. J. Phys., B22, 1269 (1972)Google Scholar
12. Clarebrough, L.M., Hargraves, M.E., Loretto, M.H. Proc. Roy. Soc., A 261, 500 (1961)Google Scholar
13. Pelletier, J.M., Vigier, G., Borrelly, R., Scripta Met. 16,1343 (1982)Google Scholar
14. Balanzat, E., Hillairet, J. J. Phys. F 11, 1977 (1981)Google Scholar
15. Vigier, G., Pelletier, J.M., Acta Met 30,1851 (1982)Google Scholar
16. Merle, P., Merlin, J. To Be PublishedGoogle Scholar
17. Tanzilli, R.A., Heckel, R.W., Trans. Tms-Aime, 245, 1363 (1969)Google Scholar
18. Borrelly, R. Mem. Sci. Rev. Met., 1,37 (1979)Google Scholar
19. Borrelly, R., Merlin, J., Pelletier, J.M., Vigier, G. J. Less Com. Met. 69,49 (1980)Google Scholar
20. Tian, D.C., Fouquet, F., Guyot, F., Mai, C., Perez, J., Mat. Sci. Eng. 53,179 (1982).Google Scholar