Skip to main content Accessibility help

Thermoelectric Properties of ZnO Thin Films Grown by Metal-Organic Chemical Vapor Deposition

  • Bahadir Kucukgok (a1), Babar Hussain (a1), Chuanle Zhou (a1), Ian T. Ferguson (a2) and Na Lu (a3)...


Thermoelectric (TE) materials have gained renewed interests in last decades for both power generation and energy conservation from waste-heat harvesting. Research in the discovery of best TE materials such as, bulk materials, complex structures, and low dimensional play crucial role to achieve high efficiency TE materials. Wide bandgap materials like ZnO can be promising candidate for high efficiency TE power generation owing to its low-cost, nontoxicity, and stability at high temperatures. In this paper, room temperature TE properties of thin film ZnO grown by metal organic vapor deposition (MOCVD) are reported. TE properties of thin film GaN are also studied as reference to that of thin film ZnO. Moreover, high resolution x-ray diffraction (HRXRD), room temperature photoluminescence (PL) with deep ultraviolet (DUV) spectroscopy (excitation at 248nm), hall effect, and thermal gradient methods have been employed to investigate the effect of structural, optical, electrical, and thermal properties of the samples, respectively. The effect of doping concentrations and structural defects on Seebeck coefficients of thin film ZnO are systematically studied and discussed in this work.



Hide All
1. Lu, N. and Ferguson, I., Semicond. Sci. Technol. 28, 074023 (2013).
2. Saeed, Y., Singh, N., and Schwingenschlogl, U., Appl. Phys. Lett. 104, 033105 (2014).
3. Gaultois, M. W., and Sparks, T. D., Appl. Phys. Lett. 104, 113906 (2014).
4. Wang, B., Kucukgok, B., Hea, Q., Melton, A. G., Leacha, J., Udwarya, K., Evans, K., Lu, N. and Ferguson, I. T., MRS Online Proceedings Library, 1558 (2013).
5. Zhu, H., Sun, W., Armiento, R., Lazic, P., and Ceder, G., Appl. Phys. Lett. 104, 082107 (2014).
6. Elsheikh, M. H., Shnawah, D. A., Sabri, M. F. M., Said, S. B. M., Hassan, M. H., Bashir, M. B. A., Mohamad, M., Renewable and Sustainable Energy Reviews 30, 337355 (2014).
7. Jood, P., Mehta, R. J., Zhang, Y., Borca-Tasciuc, T., Dou, S. X., Singh, D. J. and Ramanath, G., RSC Adv. 4, 6363 (2014).
8. Gautam, D., Engenhorst, M., Schilling, C., Schierning, G., Schmechel, R., and Winterer, M., J. Mater. Chem. A, 3, 189197 (2015).
9. Kucukgok, B., Wang, B., Melton, A. G., Lu, N., and Ferguson, I. T., Phys. Status Solidi C, 11, 894897 (2014).
10. Brockway, L., Vasiraju, V., Sunkara, M. K., and Vaddiraju, S., ACS Appl. Mater. Interfaces, 6, 1492314930 (2014).
11. Saini, S., Mele, P., Honda, H., Henry, D. J., Hopkins, P. E., Molina-Luna, L., Matsumoto, K., Miyazaki, K., and Ichinose, A., Jpn. J. Appl. Phys. 53, 060306 (2014).
12. Alama, H., Ramakrishna, S., Nano Energy, 2, 190212 (2013).
13. Fan, J. C., Sreekanth, K. M.. Xie, Z., Chang, SL., Rao, K.V., Progress in Materials Science, 58, 874985 (2013).
14. Kikuchi, A., Okinaka, N., Akiyama, T., Scr. Mater. 63, 407410 (2010).
15. Nong, N. V., Pryds, N., Linderoth, S., Ohtaki, M., Adv. Mater. 23, 24842490 (2011).
16. Ito, M., Furumoto, D., J. Alloys Compd. 450, 517520 (2008).
17. Takayanagi, R., Fujii, T., and Asamitsu, A., Jpn. J. Appl. Phys. 53, 111101 (2014).
18. Makino, T., Segawa, Y., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 87 (2005).
19. Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 88 (2006).
20. Fischetti, M. V., Phys Rev B. 44, 5527 (1991).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed