Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T15:57:00.263Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Single Crystal Alloys Bi8Sb32Te60, Bi9Sb31Te60 and Bi10Sb30Te60 Grown by the T.H.M. Method

Published online by Cambridge University Press:  15 February 2011

T. Caillat
Affiliation:
Laboratoire de Physique du Solide, UA CNRS 155, Ecole des Mines, Parc de Saurupt, 54042 NANCY Cedex, FRANCE
M. Carle
Affiliation:
Laboratoire de Physique du Solide, UA CNRS 155, Ecole des Mines, Parc de Saurupt, 54042 NANCY Cedex, FRANCE
J. P. Fleurial
Affiliation:
Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109, U.S.A.
H. Scherrer
Affiliation:
Laboratoire de Physique du Solide, UA CNRS 155, Ecole des Mines, Parc de Saurupt, 54042 NANCY Cedex, FRANCE
S. Scherrer
Affiliation:
Laboratoire de Physique du Solide, UA CNRS 155, Ecole des Mines, Parc de Saurupt, 54042 NANCY Cedex, FRANCE
Get access

Abstract

It has been reported that high figures of merit could be achieved on bismuth telluride grown by T.H.M. (Travelling Heater Method). Further improvements could be obtained for the p-type materials by studying solid solutions formed by bismuth telluride and antimony telluride.

A good knowledge of the ternary phase diagram is necessary to obtain homogeneous ingots by T.H.M..

We present the results of the determination of ternary phase diagram (Bi-Sb-Te). The equilibrium data between liquid and solid alloys Bi8Sb32Te60, Bi9Sb31Te60 and Bi10Sb30Te60 are also reported and it allows their elaboration by T.H.M..

Thermoelectric characterization of ternary samples is carried out as a function of stoichiometric deviations. Measurements of electrical and thermal conductivities as well as Seebeck coefficient were done at room temperature for the Bi8Sb32Te60, Bi9Sb31Te60 and Bi10Sb30Te60 alloys.

The values of the figure of merit remain interesting for the alloys studied and a maximum value of 3.2 10−3 K−1 is reached for the Bi9Sb31Te60 alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yim, W.M. and Rosi, F.D., Solid State Electronics 15, 1121 (1972).Google Scholar
2. Fleurial, J.P., Gailliard, L., Triboulet, R., Scherrer, H. and Scherrer, S., J. Phys. Chem. Solids 49, 10, 1237 (1988).Google Scholar
3. Gailliard, L., Doctoral Thesis (1989).Google Scholar
4. Gailliard, L., Caillat, T., Scherrer, H. and Scherrer, S., in the Eighth International Conference on Thermoelectric Energy Conversion, edited by H. and S. Scherrer, Laboratoire de Physique du Solide, Ecole des Mines de Nancy, 54042 Nancy France.Google Scholar
5. Birkholz, U., Z. Naturforschung 13a, 780 (1958).Google Scholar
6. Rosi, F.D., Abeles, B. and Jensen, R.V., J. Phys. Chem. Solids 10, 191 (1959).Google Scholar
7. Goldsmid, H.J., J. Appl. Phys. 32, 2198 (1961).Google Scholar
8. Caillat, T., J. Phys. Chem. Solids, to be published.Google Scholar
9. Scherrer, H., Weber, S. and Scherrer, S., Phys. Lett. 77a, 189, (1980).Google Scholar
10. Smith, M.J., Knight, R.J. and Spencer, C.N., J. of Appl. Phys. 33, 2186 (1962).Google Scholar
11. Abrikosov, N.C. and Poretskaya, L.V., Neorg. Mat. 1, 503 (1965).Google Scholar
12. Stary, Z., Horak, J., Stordeur, M. and Stolzer, M., J. Phys. Chem. Solids 49, 1, 29 (1988).Google Scholar
13. Caillat, T., Doctoral Thesis (1991).Google Scholar