Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:52:44.433Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Cr3S4-Type Selenides

Published online by Cambridge University Press:  10 February 2011

G. Jeffrey Snyder
Affiliation:
Jet Propulsion Laboratory/Califomia Institute of Technology 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
T. Caillat
Affiliation:
Jet Propulsion Laboratory/Califomia Institute of Technology 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
J. -P. Fleurial
Affiliation:
Jet Propulsion Laboratory/Califomia Institute of Technology 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
Get access

Abstract

Several compounds with the Cr3S4 structure type have been studied for their thermoelectric properties. All exhibit low lattice thermal conductivity of about 15 mW/cmK, independent of temperature. Many of the compounds, such as Co3Se4, Ni3Se4, Fe3Se4, Ti3Se4, FeNi2Se4, and FeCo2Se4, are metals with relatively low electrical resistivity and Seebeck coefficient. The Cr containing compounds, such as Cr3Se4, NiCr2Se4, CoCr2Se4, and FeCr2Se4, have the largest Seebeck coefficients and highest resistivity. thermoelectric applications is FeCr2Se4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Landolt-Börnstein (Springer-Verlag, Berlin, Vols. NS III/17h;NS III/12b;NS 111/4b.Google Scholar
[2] Ivanova, V. A., Abdinov, D. S., and Aliev, G. M., Phys. Stat. Sol. 24, K23 (1967).Google Scholar
[3] Abdullaev, G. B., Aliev, G. M., Ivanova, V. A., et al., Heat Transfer-Soviet Research 5, 30 (1973).Google Scholar
[4] Valiev, L. M., Kerimov, I. G., Babaev, S. K., et al., Inorg. Mater., 176 (1975).Google Scholar
[5] Spitzer, D. P., J. Phys. Chem. Solids 31, 19 (1970).CrossRefGoogle Scholar
[6] Guseinov, D. A., Sadykhov, R. Z., and Namazov, A. D., Inorg. Mater. 26, 1511 (1991).Google Scholar
[7] Akhmedov, N. R., Dzhalilov, N. Z., Aliev, G. M., et al., Inorg. Mater. 10, 711 (1974).Google Scholar
[8] Bouchard, R. J. and Wold, A., J. Phys. Chem. Solids 27, 591 (1966).CrossRefGoogle Scholar
[9] Guseinov, D. A., Aldzhanov, M. A., Sadykhov, R. Z., et al., Inorg. Mater. 25, 1018 (1989).Google Scholar
[10] Anzai, S., Ohji, M., Ohta, S., et al., Jpn. J. Appl. Phys. 32, 311 (1993).CrossRefGoogle Scholar
[11] Valiev, L. M., Kerimov, I. G., Abdurragimov, A. A., et al., Inorg. Mater., 613 (1977).Google Scholar
[12] Bouchard, R. J., Inorg. Chem. 8, 850 (1969).CrossRefGoogle Scholar
[13] van der Pauw, L. J., Philips Res. Repts. 13, 1 (1958).Google Scholar
[14] Wood, C., Zoltan, L. D., and Stapfer, G., Rev. Sci Instrum. 56, 719 (1985).CrossRefGoogle Scholar
[15] Rowe, D. M., Thermoelectric Handbook (CRC, Boca Raton, 1995).Google Scholar
[16] Vandersande, J. W., Wood, C., Zoltan, A., et al., in Thermal Conductivity (Plenum, New York, 1988), p. 445.Google Scholar
[17] Barnard, R. D., Thermoelectricity in Metals and Alloys (Wiley, New York, 1972).Google Scholar
[18] Trodahl, H. J., Phys. Rev. B 51, 6175 (1995).CrossRefGoogle Scholar
[19] Heikes, R. R. and Ure, R. W., Thermoelectricity: Science and Engineering (Interscience, New York, 1961).Google Scholar