Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T00:25:57.900Z Has data issue: false hasContentIssue false

Thermodynamics and the CVD of Diamond

Published online by Cambridge University Press:  26 February 2011

Walter A. Yarbrough*
Affiliation:
271 Materials Research Laboratory The Pennsylvania State University University Park, Pa. 16802
Get access

Abstract

Bulk diamond is unstable relative to bulk graphite except at high pressure and temperature. In spite of this, well crystallized diamond has been grown using numerous CVD methods, most of which have in common the production of atomic hydrogen and hydrocarbon radicals in regimes where solid carbon is expected to be a stable product. Two fundamentally different points of view have emerged in the effort to explain why well crystallized diamond, and not g”reatcphheitde” obry v aittroemouics hcyadrbroogne, nis aot bas erarvtee dh iignh tehre sthea enx dpiearmimoenndt sa. nTd hhee fnicrset dairagmueosn dth iast gkrinapethiictael liys stable with respect to graphite. If diamond formation is kinetically controlled the deposition mechanism is critical and much debate has centered on the mechanism and species involved. Alternatively it is argued that at the growth interface, diamond surfaces are stabilized by termination with hydrogen. If this is correct, and bulk reorganization ignored, then it is shown that a global understanding of the parameters important to the growth of diamond can be obtained without detailed kinetic analyses. Thus it is argued that single crystal diamond films of arbitrarily high purity and perfection are theoretically possible by CVD in spite of the bulk instability of diamond. It is also suggested that general principles exist which might be applied to the growth of other well crystallized metastable phases - notably cubic boron nitride.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Varnin, V. P., Derjaguin, V. V., Fedoseev, D. V., Teremetskaya, I. G. and Khodan, A. N., Sov. Phys. Crystallogr., 22 (4), 513515 (1977).Google Scholar
2. Spitsyn, B. V. and Bouilov, L. L., Diamond and Diamond-Like Materials Synthesis: Extended Abstracts, Materials Research Society, Pittsburgh, PA, April, 1988, pp. 314.Google Scholar
3. Spitsyn, B. V., Paper No. 1-01, First International Conference on the New Diamond Science and Technology, Program and Abstracts, JNDF, Tokyo, October, 24-26, 1988, pp. 2223.Google Scholar
4. Fedoseev, D. V., Varnin, V. P. and Derjaguin, B. V., Russ. Chem. Rev., 53 (5), 435444 (1984).Google Scholar
5. Pate, B. B., Surface Science, 16, 83142 (1986).Google Scholar
6. Roy, R., Messier, R. and Spear, K. E., Microwave Plasma Synthesis of Diamonds and Diamond Coatings, Final Technical Report, ONR Contract N00014-84-K-0749, January, 1986.Google Scholar
7. Yarbrough, W. A. and Roy, Rustum, Diamond and Diamond-Like Materials Synthesis, Johnson, G. H., Badzian, A. R. and Geis, M. W., eds., Materials Research Society, 3338 (1988).Google Scholar
8. Spear, K. E., J. Am. Cer. Soc., 72 (2), 171191 (1989).Google Scholar
9. Spear, K. E., Earth and Miner. Sci., 46 (4), 5359 (1987).Google Scholar
10. Setaka, N., J. Mater. Res., 4, 664 (1989).Google Scholar
11. Sommer, M., Mui, K., and Smith, F. W., Paper W-7, Final Program and Abstracts, Third Annual SDI/OST Diamond Symposium, Crystal City, Va., July, 1988.Google Scholar
12. Sommer, M., Mui, K and Smith, F. W., Solid State Comm., 69 (7), 775778 (1989).Google Scholar
13. Wagman, D. D., et. al., eds., J. Phys. Chem. Ref. Data, 11 (2), 83 (1982).Google Scholar
14. Howes, V. R., Proc. Phys. Soc., 80, 648662(1962).Google Scholar
15. Eriksson, G., Chemica Scripta, 8. 100103 (1975).Google Scholar
16. Wang, M. S. and Spear, K. E., Proc. Ninth International Conf. on Chemical Vapor Deposition, Vol.84–6, The Electrochemical Society, 98–111 (1984).Google Scholar
17. Hunt, L. P., Proc. Tenth International Conf. on Chemical Vapor Deposition, Vol.87–8, The Electrochemical Society, 112–121 (1987).Google Scholar
18. Eriksson, Th., Carlsson, J-O, Niemi, E., Ostling, M. and Petersson, C. S., Proc. Tenth International Conf. on Chemical Vapor Deposition, Vol. 87–8, The Electrochemical Society, Vol. 87–8, 736–746 (1987).Google Scholar
19. Derry, T. E., Madiba, C. C. P. and Sellschop, J. P. F., Nucl. Instr. and Meth. in Phy. Res., 218 559562 (1983).Google Scholar
20. Lander, J. J. and Morrison, J., Surface Science, 4, 241246 (1966).Google Scholar
21. Waclawski, B. J., Pierce, D. T., Swanson, N. and Celotta, R. J., J. Vac. Sci. Technol., 21 (2), 368370 (1982).Google Scholar
22. Pepper, S. V., J. Vac. Sci. Technol., 20 (2), 213 (1982).Google Scholar
23. Sappok, R. and Boehm, J. P., Carbon, 6, 283295 (1968).Google Scholar
24. Prigogine, I., Thermodynamics of Irreversible Processes, 3rd ed., John Wiley and Sons, New York, 1967.Google Scholar
25. Van Rysselberghe, P., Thermodynamics of Irreversible Processes, Blaisdell Pub. Co., New York, 1963.Google Scholar
26. Yourgrau, W., van der Merwe, A. and Raw, G., Treatise on Irreversible and Statistical Thermophysics, Macmillan Company, New York, 1966.Google Scholar
27. Prigogine, I., Etude thermodynamique des phenomenes irreversibles, Thesis, Liege, Desoer, 1947.Google Scholar
28. de Groot, S. R., Thermodynamics of Irreversible Processes, North Holland, Amsterdam, 1951.Google Scholar
29. Angus, J. C., Will, H. A. and Stanko, W. S., J. Appl. Phys., 39, 2915 (1968).Google Scholar
30. Derjaguin, B. V. and Fedoseev, D. V., Carbon, 11, 299308 (1973).Google Scholar
31. Machlin, E. S., J. Mater. Res., 3 (5), 958968 (1988).Google Scholar
32. Celli, F. G. and Butler, J. E., Appl. Phys. Lett., 54. 1031 (1989). See also J. E. Butler, F. G. Celli, D. B. Oakes, L. M. Hanssen, W. A. Carrington and K. A. Snail, High Temp. Science (in press).Google Scholar
33. Benson, S. W., Thermochemical Kinetics, Wiley, New York, 1968.Google Scholar
34. Benson, S. W. and Buss, J. H., J. Chem. Phys., 22, 546 (1958).Google Scholar
35. Benson, S. W., et. al., Chem. Rev., 69, 279324 (1969).Google Scholar
36. Kitaigorodsky, A. I., Molecular Crystals and Molecules, Academic Press, New York, 1973, pp.402404.Google Scholar
37. Hine, J., Structural Effects on Equilibria in Organic Chemistry, John Wiley and Sons, New York, 1975, pp. 111113.Google Scholar
38. Liou, Y., Inspektor, A., Weimer, R. and Messier, R. F., “Low Temperature Diamond Deposition on Glass,”Diamond Optics II Holly, S. and Feldman, A., eds., Proc. SPIE, 1989 (in press).Google Scholar
39. Yarbrough, W. A., Badzian, A. R., Pickrell, D., Liou, Y. and Inspektor, A., “Diamond Deposition at Low Substrate Temperatures,” J. Crys. Growth (in press).Google Scholar
40. Wild, Ch., Herres, N., Wagner, J., Koidl, P., and Anthony, T. R., Diamond and Diamond-Like Films, Dismukes, J. P. et. al., ed., The Electrochemical Society, Pennington, N. J., 1989, Proc. 89–12, pp. 283295.Google Scholar
41. Sato, Y., New Diamond 1988, Japan New Diamond Forum, pp. 30–35.Google Scholar
42. Buckley, H. E., Crystal Growth, John Wiley and Sons, New York, 1951, pp. 121146.Google Scholar
43. Frenklach, M. and Spear, K. E., J. Mater. Res., 3 (1), 133140 (1988).Google Scholar
44. Huang, D., Frenklach, M. and Maroncelli, M., J. Phys. Chem., 22 (22), 63796381 (1988).Google Scholar
45. Mania, R., Stobierski, L. and Pampuch, R., Cryst. Res. Tech., 16 (6), 785788 (1981).Google Scholar
46. Tsuda, M., Nakajima, M. and Oikawa, S., Jap. J. Appl. Phys., 26 (5), L527–L529 (1987).Google Scholar
47. Tsuda, M., Nakajima, M. and Oikawa, S., J. Am. Chem. Soc., 10, 57805783 (1986).Google Scholar
48. Vakil, H. B., “Thermodynamic and Kinetic Aspects of CVD Diamond Growth,” First Annual Diamond Technology Workshop Proceedings, Wayne State University, Detroit, MI, September, 18, 1989.Google Scholar