Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T08:17:10.447Z Has data issue: false hasContentIssue false

Thermodynamic Stability of Ptal Thin Films on GaAs

Published online by Cambridge University Press:  25 February 2011

Dae-Hong Ko
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Robert Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

The thermal stability of PtAl thin films on GaAs substrates has been studied using transmission electron microscopy and Auger electron spectroscopy. The PtAl thin films were formed by sequential deposition of discrete Pt and Al layers on GaAs by e-beam evaporation followed by subsequent annealing processes. Interfacial reactions in the Al/Pt/GaAs system proceed in two stages. Upon low temperature annealing Pt and GaAs react to form PtGa and PtAs2. Further high temperature annealing causes PtGa, PtAs2 and Al to react together producing the desired PtAl on GaAs. We observed solid-phase epitaxial regrowth of GaAs during the second stage of reaction. The PtAl/GaAs interface is determined to be thermally stable during an 800°C/30 min. anneal, while remaining morphologically uniform on GaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y.K., Shuh, D.K., Williams, R.S., Sadwick, S.P. and Wang, K.L., Mat. Res. Soc. Proc. 148, 15 (1989)CrossRefGoogle Scholar
2. Guivarc’h, A., Guerin, R. and Secoue, M., Electron. Lett. 23, 1004 (1987)CrossRefGoogle Scholar
3. Palmstrøm, C.J., Garrison, K.C., Fimland, B.-O., Sands, T. and Bartynski, R, J. Appl. Phys. 65, 4753 (1989)CrossRefGoogle Scholar
4. Guivarc’h, A., Secoue, M., and Guenais, B., Appl. Phys. Lett. 52, 948 (1988)CrossRefGoogle Scholar
5. Palmstrøm, CJ., Garrison, K.C., Mounier, S., Sands, T., Schwartz, C.L., Tabatabaie, N., Allen, S.J. Jr., Gilchrist, J.L., and Miceli, P.F., J. Vac. Sci. Technol. B7, 747, (1989)CrossRefGoogle Scholar
6. Sands, T., Appl. Phys. Lett. 52, 197 (1988)CrossRefGoogle Scholar
7. Sands, T., Marshall, E.D. and Wang, L.C., J. Mater. Res. 3, 914 (1988)CrossRefGoogle Scholar
8. Bravman, J.C. and Sinclair, R., J. Electron. Microsc. Technol. 1, 53 (1984)CrossRefGoogle Scholar
9. Fontaine, C., Okumura, T., and Tu, K.N., J. Appl. Phys. 54, 1404 (1983)CrossRefGoogle Scholar
10. Murarka, S.P., Blech, I.A., and Levinstein, H.J., J. Appl. Phys. 47, 5175 (1976)CrossRefGoogle Scholar
11. Beyers, R., Kim, K.B., and Sinclair, R., J. Appl. Phys. 61, 2195 (1987)CrossRefGoogle Scholar
12. Miedema, A.R., Boom, R., and de Boer, F.R., J. Less Comm. Met. 41, 283 (1975)CrossRefGoogle Scholar
13. Niessen, A. K., de Boer, F.R., Boom, R., de Chatel, P.F., Mattens, W.C and Miedema, A.R., CALPHAD 7, 51 (1983)CrossRefGoogle Scholar