Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-29T08:23:36.063Z Has data issue: false hasContentIssue false

Thermodynamic and Elastic Properties of Polyethylene at Elevated Temperatures

Published online by Cambridge University Press:  26 February 2011

Tahir Cagin
Affiliation:
Molecular Simulations, Inc, 199 S. Los Robles Ave., Suite 540, Pasadena, CA 91101 Beckman Institute, California Institute of Technology, Pasadena, CA 91125.
Naoki Karasawa
Affiliation:
Beckman Institute, California Institute of Technology, Pasadena, CA 91125.
Siddhart Dasgupta
Affiliation:
Beckman Institute, California Institute of Technology, Pasadena, CA 91125.
William A. Goddard III
Affiliation:
Beckman Institute, California Institute of Technology, Pasadena, CA 91125.
Get access

Abstract

Over the years molecular modeling techniques, such as Molecular Mechanics, Monte Carlo and Molecular Dynamics have been applied to study the equilibrium thermodynamic and mechanical properties of materials. The accuracy of the predictions made by these techniques strongly depend on the force fields employed to represent the interactions in the studied system. Recently developed force field parameters for crystalline polyethylene are shown to reproduce the mechanical properties of polyethylene accurately through molecular mechanics. Here, we will present the statistical fluctuation formulae for the elevated temperature equilibrium thermodynamic and elastic properties in terms of microscopic variables such as energy, enthalpy, pressure, volume, microscopic strain or stress tensors and present preliminary results of our calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parrinello, M. and Rahman, A., Phys. Rev. Lett. 45, 1196 (1980).CrossRefGoogle Scholar
2. Nose, S., J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
3. Ray, J. R., Comp. Phys. Rep. 8, 109 (1988) and references therein.CrossRefGoogle Scholar
4. Cagin, T. and Ray, J. R., Phys. Rev. B 31, 699 (1988).Google Scholar
5. Amos, R. D., Mol. Phys. 38, 33 (1979).CrossRefGoogle Scholar
6. Dasgupta, S. and Goddard, W. A. III, J. Chem. Phys. 90, 7207 (1989).CrossRefGoogle Scholar
7. Karasawa, N., Dasgupta, S. and Goddard, W.A. III, J. Phys. Chem. 25, 2260 (1991).CrossRefGoogle Scholar
8. Nose, S. and Klein, M. L., Mol. Phys. 50, 1055 (1983).CrossRefGoogle Scholar
9. Cagin, T., Goddard, W.A. III. and Ary, M. L., Comp. Polym. Sci., 1, 241 (1991).Google Scholar
10. Swan, P. R., J. Polym. Sci., 56, 403 (1962).Google Scholar
11. Avitable, G., Napolitano, R., Pirozzi, B., Rouse, K. D., Thomas, H. W. and Wills, B. T. M., J. Polym. Sci., Polym. Lett. Ed., 13, 351 (1975).Google Scholar
12. Karasawa, N. and Goddard, W. A. III, J. Phys. Chem. 92, 7320 (1989).CrossRefGoogle Scholar
13. Cagin, T. and Ray, J. R., Phys. Rev. B 32, 7940 (1988).Google Scholar