Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T11:38:31.559Z Has data issue: false hasContentIssue false

Thermochemistry and High Temperature Thermodynamic Properties of Rare Earth-Alkaline Earth-Copper Oxide Superconductors*

Published online by Cambridge University Press:  28 February 2011

Lester R. Morss
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
David C. Sonnenberger
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
R. J. Thorn
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
Get access

Abstract

Enthalpies of formation of the perovskite-related oxides, La1.85 Sr0.15CuO4, YBa2Cu3Oy, with y = 6.93, 6.69, and 6.47 have been determined at 298.15 K by perchloric acid solution calorimetry. Enthalpies of formation and free energies of reactions with H2 O(g) and CO2 (g) have been evaluated. The partial molar enthalpy of solution of oxygen in YBa2 Cu3Oy has been determined and compared with values derived from measurements or the equilibrium partial vapor pressures of oxygen. The significance of the defect state thermochemistry in conductivity is identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Permanent address: Department of Chemistry and Biochemistry, Illinois Benedictine College, Lisle, IL 60532.

*

Work performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences, U. S. Department of Energy, under contract number W-31–109-ENG-38.

References

REFERENCES

1. Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36, 3608 (1987).Google Scholar
2. Appelman, E.H., Morss, L.R., Kini, A.M., Geiser, U., Umezawa, A., Crabtree, G.W., and Carlson, K.D., Inorg. Chem. 26 3237 (1987).Google Scholar
3. Morss, L.R., Sonnenberger, D.C., and Thorn, R.J., to be published.Google Scholar
4. Gorbunov, V.E., Gavrichev, K.S., Sharpataya, G.A., Shaplygin, I.S., and Zalukaev, V.L., Zhur. Neorg. Khim. 26, 547 (1981).Google Scholar
5. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R.L., J. Phys. Chem. Ref. Data 11, Supp. 2 (1982).Google Scholar
6. Nevitt, M.V., personal communication.Google Scholar
See also Nevitt, M.V., Crabtree, G.W. and Klippert, E.K., Phys. Rev. B. 36, 2398 (1987);Google Scholar
Inderhees, M.B., Salaman, M.B, Freedman, T.H., and Ginsberg, D.M., Phys. Rev. B. 36, 2401 (1987).Google Scholar
7. Kishio, K., Shimoyama, J., Hasegawa, T., Kitazawa, K., and Fueki, K., Jap. J. Appl. Phys. 26, LI228 (1987).Google Scholar
8. Gallagher, P.K., Adv. Ceram. Mat. 2 632 (1987).Google Scholar
9. Strobel, P., Capponi, J.J., Marezio, M., and Monod, P., Sol. State Comm. 64 513 (1987).Google Scholar