Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T23:36:04.160Z Has data issue: false hasContentIssue false

Thermally Stable Poled Polymers: Highly Efficient Heteroaromatic Chromophores In High Temperature Polyimides

Published online by Cambridge University Press:  16 February 2011

Alex K-Y. Jen*
Affiliation:
EniChem AMerica, Inc., 2000 Cornwall Road, Monmouth Junction, NJ 08852.
K. Y. Wong
Affiliation:
EniChem AMerica, Inc., 2000 Cornwall Road, Monmouth Junction, NJ 08852.
V. Pushkara Rao
Affiliation:
EniChem AMerica, Inc., 2000 Cornwall Road, Monmouth Junction, NJ 08852.
K. Drost
Affiliation:
EniChem AMerica, Inc., 2000 Cornwall Road, Monmouth Junction, NJ 08852.
Y. M. Cai
Affiliation:
EniChem AMerica, Inc., 2000 Cornwall Road, Monmouth Junction, NJ 08852.
B. Caldwell
Affiliation:
EniChem AMerica, Inc., 2000 Cornwall Road, Monmouth Junction, NJ 08852.
R. M. Mininni
Affiliation:
EniChem AMerica, Inc., 2000 Cornwall Road, Monmouth Junction, NJ 08852.
*
*To whom all correspondence should be addressed.
Get access

Abstract

In this paper, we report our recent developments in achieving thermally stable polyimides that possess large second order nonlinear optical activity. We have developed several classes of novel chromophores based on the combination of efficient thiophene conjugating units and novel electron-donating and electron-accepting functional groups. Through these developments, we have synthesized chromophores that possess non-resonant βμ values as high as 9,100 × 10−48 esu measured at 1.9 μm. These chromophores also possess improved thermal and chemical stabilities. The incorporation of these chromophores in high temperature polyimides produces E-O Materials with high linear electro-optic coefficients (in excess of 15 pm/V at 1.3 μm) and long-term temporal stability at an elevated temperature of 150°C for more than 800 hours.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

Present address: Department of Physics, The Chinese University of Hong Kong, China

References

REFERENCES

1. Lipscomb, G.F., Lytel, R.S., Tickner, A.J., VanEck, T.E., Kwiatkowski, S.L. and Girton, D.G., SPIE Sym. Proc., 1337, 23 (1990) and references therein.Google Scholar
2. Jen, A. K-Y., Wong, K.Y., Rao, V.P., Drost, K.J. and Mininni, R.M., Mater. Res. Sym. Proc., 241, 59 (1992).Google Scholar
3. Marder, S.R., Gorman, C.B., Tiemann, B.G. and Cheng, L.T., J.Am. Chem. Soc., 115, 3006 (1993).Google Scholar
4. Xu, C., Wu, B., Dalton, L., Shi, Y., Ranon, P.M. and Stein, W.H., Macromolecules, 24, 5421 (1991).Google Scholar
5. Jeng, R.J., Chen, Y.M., Jain, A.K., Kumar, J. and Tripathy, S.K., Chem. Mater., 4, 972 (1992).Google Scholar
6. Francis, C.V., White, K.M., Boyd, G.T., Moshrefza, R.S., Mohapatra, S.K., Radcliffe, M.D., Trend, J.E. and Williams, R.C., Chem. Mater., 5, 506 (1993).Google Scholar
7. Wong, K.Y., Jen, A.K-Y., J. Appl. Phys. (in press).Google Scholar
8. Park, J., Marks, T., Yang, J. and Wong, G.K., Chem. Mater., 2, 229 (1990).Google Scholar
9. Jungbauer, D., Reck, B., Twieg, R., Yoon, D., Wilson, C.G. and Swalen, J.O., Appl. Phys. Lett., 56, 2610 (1990).Google Scholar
10. Jen, A.K-Y., Rao, V.P., Wong, K.Y. and Drost, K.J., J. Chem. Soc. Chem. Commun., 90 (1993).Google Scholar
11. Rao, V.P., Jen, A.K-Y., Wong, K.Y. and Drost, K.J., Tet. Lett., 1747 (1993).Google Scholar
12. Rao, V.P., Jen, A.K-Y., Wong, K.Y. and Drost, K.J., J. Chem. Soc. Chem. Commun., 1118 (1993).Google Scholar
13. Wong, K.Y., Jen, A.K-Y., Rao, V.P., Drost, K.J. and Mininni, R.M., SPIE Proc., 1992, 1775.Google Scholar
14. Singer, K.D., Sohn, J.E., King, L.A., Gordon, H.M., Katz, H.E. and Dirk, C.W., J. Opt. Soc. Am. B., 6, 1339 (1989).Google Scholar
15. Katz, H.E., Singer, K.D., Sohn, J.E., Dirk, C.W., King, L.A., Gordon, H.M., J.Am. Chem. Soc, 109, 6561 (1987).Google Scholar
16. Wu, J., Valley, J.F., Stiller, M., Evmer, S., Binkley, E.S., Kenney, J.T., Lipscomb, G.F. and Lytel, R., Mat. Res. Soc. Sym. Proc. 247, 49 (1992).Google Scholar
17. a) Jen, A. K-Y., Wong, K.Y., Rao, V.P., Drost, K.J. and Mininni, R.M., Mater. Res. Sym. Abst., 186 (1993).Google Scholar
b) Wong, K.Y., Jen, A.K-Y., Rao, V.P., Drost, K.J., Mininni, R.M., Kenney, J.T. and Garito, A.F., QELS Conference, OSA Technical Digest Series 3, 17 (1993).Google Scholar
18. Teng, C.C. and Man, H.T., Appl. Phys. Lett., 56, 1754 (1990).Google Scholar
19. Struik, L.C.E., Physical Aging in AMorphous Polymers and Other Materials, Elsevier Amsterdam, 1978.Google Scholar