Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-24T07:04:34.488Z Has data issue: false hasContentIssue false

Thermally Stable Oxygen and Nitrogen Implant Isolation of C-Doped Al0.35Ga0.65As

Published online by Cambridge University Press:  22 February 2011

J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185-5800
M. E. Sherwin
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185-5800
A. G. Baca
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185-5800
R. P. Schneider Jr.
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185-5800
Get access

Abstract

Oxygen and nitrogen ion implantation have been applied, for the first time, to C-doped Al0.35Ga0.65As layers produce high resistivity regions (ps ≥ 1×1010 Ω/□) that are stable after annealing at 900 ºC. A dose threshold for stable compensation for both O and N ions was found above 8×1013 cm-2 for samples doped at 2×1018 cm-3. Although O implantation has been reported to form stable compensation in Si-doped and Be-doped AlGaAs, the ability of nitrogen implantation to produce thermally stable compensation has not been previously reported and may be due to a C-N complex. The existence of this C-N complex is supported by results for O- and N-implants into C-doped GaAs where N formed thermally stable compensation but O did not. Sheet resistance data versus anneal temperature and estimates of the depth of the defect levels are reported. This result will have application to heterojunction bipolar transistors and complementary heterostructure field effect transistor technologies that employ C-doped AlGaAs or GaAs layers along with high temperature post-isolation processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Watanabe, K. and Yamazaki, H., Appl. Phys. Lett., 60, 847 (1992).Google Scholar
2 Baca, A. G., Sherwin, M. E., Zolper, J. C., Shul, R. J., Howard, A. J., Draper, B. L., Rieger, D. J., Klem, J. F., Robertson, P. J., and Chalmers, S. A., Inter. Semi. Dev. Res. Symp., Charlottesville, VA (Dec. 1993).Google Scholar
3 Yamahata, S., Matsuoka, Y., Ishibashi, T., IEEE Trans. Elec. Dev., 39, 2655 (1992).Google Scholar
4 Pearton, S. J., Ren, F., Wisk, P. W., Fullowan, T. R., Kopf, R. F., Kuo, J.-M., Hobson, W. S., Abernathy, C. R., J. Appl. Phys. 69, 698 (1991).Google Scholar
5 Krauz, Ph., Roa, E. V. K., Thibierge, H., and Harmond, J. C., Appl. Phys. Lett. 62, 867 (1993).Google Scholar
6 Zolper, J. C., Schneider, R, P. Jr., and Lott, J. A., Appl. Phys. Lett., 6 December 1993.Google Scholar
7 Zolper, J. C., Baca, A. G., and Chalmers, S. A., Appl. Phys. Lett. 62, 2536 (1993).Google Scholar
8 Pearton, S. J., Iannuzzi, M. P., L Reynolds, C. Jr., Peticolas, L., Appl. Phys. Lett. 52, 395 (1988).Google Scholar
9 Von Neida, A. E., Pearton, S. J., Hobson, W. S., Abernathy, C. R., Appl. Phys. Lett. 54, 1540 (1989).Google Scholar
10 Moll, A. J., Yu, K. M., Walukiewicz, W., Hansen, W. L., Haller, E. E., Appl. Phys. Lett. 60, 2383 (1992).Google Scholar
11 Pearton, S. J. and Abernathy, C. R., Appl. Phys. Lett., 55 678 (1989).Google Scholar
12 Batey, J. and Wright, S. L., J. Appl. Phys., 59 200 (1986).Google Scholar