Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T05:24:02.792Z Has data issue: false hasContentIssue false

A Thermal Stage for Nanoscale Structure Studies with the Scanning Force Microscope

Published online by Cambridge University Press:  21 February 2011

W. J. Kulnis Jr
Affiliation:
University of Maine, Orono, ME 04469
W. N. Unertl
Affiliation:
University of Maine, Orono, ME 04469
Get access

Abstract

We have constructed an inexpensive sample mounting stage for studies of temperature dependent processes in a surface force microscope (SFM). The stage is constructed from a Peltier thermoelectric heater secured to a standard SFM mounting stage with silver paint. The sample temperature can be varied from room temperature to about 100°C thus making it possible to use the SFM to observe thermally activated processes at lateral spatial resolutions of 10-20 nm. Approximately 10 minutes is required to reach thermal equilibrium following a 5°C temperature change. The lateral magnification must be calibrated at each temperature. We illustrate the capabilities of the stage with images of polystyrene spheres just below their glass transition temperature of 100°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Binnig, G., Quate, C.F., and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
2. Albrecht, T.R. and Quate, C.F., J. Appl. Phys. 62 2599 (1987).CrossRefGoogle Scholar
3. Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phy. Rev. Lett. 59, 1942 (1987).CrossRefGoogle Scholar
4. Martin, Y. and Wickranasinghe, H.K., Appl. Phys. Lett. 50, 1455 (1987).CrossRefGoogle Scholar
5. Kirk, M.D., Albrecht, T.R., Quate, C.F., Rev. Sci. Instrum. 59, 833 (1988).CrossRefGoogle Scholar
6. Gould, S., Marti, O., Drake, B., Hellemans, L., Bradker, C.E., Hansma, P.K., Keder, N.L., Eddy, M.M., and Stucky, G.D., Nature 332, 332 (1988).CrossRefGoogle Scholar
7. Albrecht, T.R., Dovek, M.N., Lang, C.A., Grutter, P., Quate, C.F., Kvan, S.W.J., Frank, C.W., Pease, P.F.W., J. Appl. Phys. 64, 1178 (1988).CrossRefGoogle Scholar
8. Weisenhorn, A.L., MacDougall, J.E., Gould, S.A.C., Cox, S.D., Wise, M.S., Massie, J., Maivald, P., Elings, V.B., Stucky, G.D. and Hansma, P.K., Science 247, 1330 (1990).CrossRefGoogle Scholar
9. Goh, M.C., Juhue, D., Leumg, O.M., Wang, Y.C. and Winnik, M.A., Langmuir 9, 1319 (1993).CrossRefGoogle Scholar
10. Granier, V., Sartre, A., Joanicot, M., preprint 1993.Google Scholar
11. Juhue, D. and Lang, J., Langmuir 9, 792 (1993).CrossRefGoogle Scholar
12. Melcor Materials Electronics Products Corp. CAT# CPl.0-17-05TL, 990 Spruce Street Trenton, NJ 08648.Google Scholar
13. Ted Pella INC., CAT# 16112, P.O. Box 492477, Redding, CA. 96049.Google Scholar
14. Park Scientific Instruments model# SFM-BD2, 1171 Borregas Ave. Sunnyvale, CA 94089.Google Scholar
15. Burnham, N.A. and Coulton, R.J., in Scanning Tunneling Microscopy and Spectroscopy, Bonnell, D.A., ed.(VCH Publishers, New York, 1993) p. 232.Google Scholar
16. Puregas Heatless Dryer, Model PCDAl-120-B032 from General Cable Corp., Westminster, CO.Google Scholar