Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T23:54:18.889Z Has data issue: false hasContentIssue false

Thermal Stability of Structurally Controlled Lamellae and Hexagonal Mesoporous Silicate Thin Films

Published online by Cambridge University Press:  10 February 2011

I. Honma
Affiliation:
Energy division, Electrotechnical Laboratory, AIST, Umezono 1–1-4, Tsukuba, Ibaraki,305, Japan, ihonma@etl.go.jp, tel:+81–298–54–5797, fax:+81–298–54–5805
A. Endo
Affiliation:
National Institute of Materials and Chemical Research, AIST, Tsukuba, Ibaraki, Japan
D. Kundu
Affiliation:
Sol-Gel Division, Central Glass and Ceramic Research Institute, Calcutta, India.
H. S. Zhou
Affiliation:
Energy division, Electrotechnical Laboratory, AIST, Umezono 1–1-4, Tsukuba, Ibaraki,305, Japan, ihonma@etl.go.jp, tel:+81–298–54–5797, fax:+81–298–54–5805
Get access

Abstract

Thin films of mesoporous materials have been synthesized recently as lamellar, one dimensional hexagonal and cubic structures at substrate surfaces as well as at air/liquid interfaces. The present work investigates thermally induced structural changes of lamellar and one-dimensional hexagonal(1-dH) mesostructured silicate thin films, which is less known at the moment. The 1-dH films proved to be much more thermally stable than the lamellar ones; Open-pore one dimensionalhexagonalmesoporous thin films are obtained by the calcination of the films, where as the lamellarphase has collapsed after the surfactants removal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ogawa, M., J. Amer. Chem. Soc. 116, 79417942 (1994).10.1021/ja00096a079Google Scholar
2. Yang, H., Kuperman, A., Coombs, N., Mamiche-Afra, S., Ozin, A., Nature, 379, 703705 (1996).10.1038/379703a0Google Scholar
3. Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M. H. and Zink, J. I., Nature, 389, 364368 (1997).10.1038/38699Google Scholar
4. Ogawa, M., Chem. Comm. 1149 (1996)Google Scholar
5. Yang, H., Coombs, N., Sokolov, I. and Ozin, G. A., Nature, 381 589 (1996)10.1038/381589a0Google Scholar
6. Yang, H., Coombs, N., Sokolov, I. and Ozin, G. A., J. Mater. Chem. 7,1285, (1997)10.1039/a608171aGoogle Scholar
7. Aksay, I. A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P. M. and Gruner, S. M., Science,273,892 (1996)10.1126/science.273.5277.892Google Scholar
8. Trau, M., Yao, N., Kim, E., Xia, Y., Whitesides, G. M. and Aksay, I. A., Nature, 390, 674, (1997)10.1038/37764Google Scholar
9. Ryoo, R., Hyun Ko, C., Cho, S. J. and Kim, J. M., J. Phys. Chem.B. 101, 10610, (1997)10.1021/jp972721zGoogle Scholar
10. Honma, I. and Zhou, H. S., Chem. Mat. 10, 103 (1998)10.1021/cm970243zGoogle Scholar