Skip to main content Accessibility help

Thermal Stability of Si/Si0.85Ge0.15/Si Modulation Doped Double Heterostructures

  • P.J. Wang (a1), B.S. Meyerson (a1), P.M. Fahey (a1), F. LeGoues (a1), G.J. Scilla (a1) and J. M. Cotte (a1)...


The thermal stability of Si/Si0.85Ge0.15/Si p-type modulation doped double heterostructures grown by the Ultra High Vacuum/ Chemical Vapor Deposition technique has been examined by Hall measurement, transmission electron microscopy, secondary ion mass spectroscopy, and Raman spectroscopy. As deposited heterostructures showed two-dimensional hole gas formation at the abrupt Si/SiGe and SiGe/Si interfaces. Annealing at 800 °C. for 1 hr. caused the diffusion of boron acceptors to the heterointerfaces, degrading the hole mobilities observed in the two dimensional hole gas. Rapid redistribution of boron, causing a loss of the 2 dimensional carrier behavior, was observed after a 900 °C, 0.5 hr. anneal. Neither Ge interdiffusion nor the generation of misfit dislocations were observed in the annealed heterostructures, evincing the defect-free crystal quality of these as-grown strained heteroepitaxial layers. The superior stability of these heterostructures have strong positive implications for Si:Ge heterojunction devices.



Hide All
1 Fischer, S.E., Cook, R.K., Knepper, R.W., Lange, R.C., Nummy, K., Nguyen, P.T., Ahlgren, D.C., Revitz, M., and Meyerson, B.S., IEEE, IEDM, Late news paper, Washington D.C, Dec. 3–6, 1989.
2 Bean, J.C., J. Crystal Grow. 81, 411 (1987).
3 Meyerson, B.S., Appl. Phys. Lett. 48, 797 (1986).
4 Bean, J.C., Feldman, L.C., Fiory, A. T., Nakahara, S., and Robinson, I.K., J. Vac. Sci. Technol. A2 (2), 436 (1984).
5 Matthews, J.W. and Blakeslee, A.E., J. Crystal Grow. 27, 118 (1974).
6 Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 52, 852 (1988).
7 Hull, R. and Bean, J.C., Appl. Phys. Lett. 54, 925 (1989).
8 Lockwood, D.J., Baribeau, J.-M., and Timbrell, P.Y., J. Appl. Phys. 65, 3049 (1989).
9 Wang, P.J., Fang, F.F., Meyerson, B.S., Nocera, J., and Parker, B., Appl. Phys. Lett. 54, 2701 (1989).
10 People, R., Bean, J.C., Lang, D.V., Sergent, A.M., Störmer, H.L., Wecht, K.W., Lynch, R.T. and Baldwin, K., Appl. Phys. Lett. 45, 1231 (1984).
11 Ho, C.P., Hansen, S.E., and Fahey, P.M., Stanford University Technical Report SEL 84-001, Dept. of EE, Stanford University, Stanford, CA 1984.
12 Dingle, R., Störmer, H.L., Gossard, A.C. and Weigmann, W., Inst. Phys. Conf. Ser. No.45, 248 (1979).
13 Ostrom, R.M. and Allen, F.G., Vasudev, P.K., in Proceedings of the 2nd International Symposium on Si MBE, 1987, edited by J.C. Beam and L.J. schowalter, p.85.
14 Wang, W.I., Mendez, E.E., and Stern, F., Appl. Phys. Lett. 45, 639 (1984).
15 Gold, A., Phys. Rev. B 35, 723 (1987).
16 Wang, P.J., Meyerson, B.S., Fang, F.F., Nocera, J., and Parker, B., to be published.
17 Morin, F.J. and Maita, J.P., Phys. Rev. 96, 28 (1954).

Thermal Stability of Si/Si0.85Ge0.15/Si Modulation Doped Double Heterostructures

  • P.J. Wang (a1), B.S. Meyerson (a1), P.M. Fahey (a1), F. LeGoues (a1), G.J. Scilla (a1) and J. M. Cotte (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed