Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T23:00:34.074Z Has data issue: false hasContentIssue false

Thermal stability of Cr1−xAlxSiyN coatings with medium and high aluminium content prepared by arc evaporation

Published online by Cambridge University Press:  01 February 2011

Pavla Karvankova
Affiliation:
pavla.karvankova@epfl.ch, EPFL, EPFL, FSB-IPMC, Station 3, D2 454, Lausanne, N/A, 1015, Switzerland
Ayat Karimi
Affiliation:
ayat.karimi@epfl.ch, Switzerland
Olivier Coddet
Affiliation:
olivier.coddet@platit.com, Swaziland
Tibor Cselle
Affiliation:
tibor.scelle@platit.com
Marcus Morstein
Affiliation:
marcus.morstein@platit.com
Get access

Abstract

The thermal stability of Cr1−xAlxN and Cr1−xAlxSiyN nanocomposite coatings with different composition x, Si content, and phase structure has been investigated. The coatings were deposited in an industrial unit by the cathodic arc evaporation method, using rotating cylindrical cathodes. Further sets of coated WC/Co plates were subjected to an annealing step in a forming gas (92% N2 / 8% H2) atmosphere for several hours at a constant temperature (maximum 1000°C). Chemical composition, microstructure and mechanical properties of the coatings were investigated by the RBS, XRD, TEM, SEM, XPS and nanoindentation techniques.

As-deposited Cr1−xAlxSiyN coatings with Al contents x in the range of 0.4 ≤ x ≤ 0.6 showed a single-phase cubic CrAlN structure and a maximum hardness of 38 GPa. With increasing the Al content to x = 0.95 – 0.96, two-phase films consisting of hexagonal AlN and cubic CrAlN structure with hardness of about 31 GPa were obtained. The hardness of Cr1−xAlxSiyN coatings increases during annealing at temperatures in the range of 800 – 1000°C by about 1 – 4 GPa, even though the residual compressive stress in the coatings was found to relax considerably during this procedure. The addition of Si into Cr1−xAlxN delays the appearance of hcp-AlN and thereby improves the thermal stability of the coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Münz, W. D., J. Vac. Sci. Technol. A 4 (6), 2717 (1986).Google Scholar
2. Knotek, O., Bohmer, M., Leyendecker, T., J. Vac. Sci. Technol. A 4 (6), 2695 (1986).Google Scholar
3. PalDey, S., Deevi, S. C., Mat. Sci. Eng. A 342, 58 (2003).Google Scholar
4. Horling, A., Hultman, L., Oden, M., et al., J. Vac. Sci. Technol. A 20 (5), 1815 (2002).Google Scholar
5. Suzuki, T., Makina, Y., Samandi, M., et al., J. Mat. Sci. 35, 4193 (2000).Google Scholar
6. Makino, Y., ISIJ Int. 38 (9), 925 (1998).Google Scholar
7. Kawate, M., Hashimoto, A. K., Suzuki, T., Surf. Coat. Technol. 165, 163 (2003).Google Scholar
8. Reiter, A. E., Derflinger, V. H., Hanselmann, B., et al., Surf. Coat. Technol., in print (2005).Google Scholar
9. Sugishima, A., Kajioka, H., Makino, Y., Surf. Coat. Technol. 97, 590 (1997).Google Scholar
10. Makino, Y., Nogi, K., Surf. Coat. Technol. 98, 1008 (1998).Google Scholar
11. Kimura, A., Kawate, M., Hasegawa, H., et al., Surf. Coat. Technol. 169–170, 367 (2003).Google Scholar
12. Hasegawa, H., Suzuki, T., Surf. Coat. Technol. 188–189, 234 (2004).Google Scholar
13. Knotek, O., Atzor, M., Barimani, A., et al., Surf. Coat. Technol. 42, 21 (1990).Google Scholar
14. Hugosson, H. W., Hogberg, H., Algren, M., et al., J. Appl. Phys. 93, 4505 (2003).Google Scholar
15. Veprek, S., Männling, H.-D., Jilek, M., et al., Mat. Sci. Eng. A 366, 202 (2004).Google Scholar
16. Santana, A. E., PhD Thesis, EPFL Lausanne (2004).Google Scholar
17. Tanaka, Y.. Ichimiya, N., Onishi, Y., et al., Surf. Coat. Technol. 146–147, 215 (2001).Google Scholar
18. Ribeiro, E., Malczyk, A., Carvalho, S., et al., Surf. Coat. Technol. 151–152, 515 (2002).Google Scholar
19. Hitachi Tool Engineering Ltd., EU Patent No. EP 1 422 311 A2 (26 May 2004).Google Scholar
20. Parlinska-Wojtan, M., Karimi, A., Cselle, T., et al., Surf. Coat. Technol. 177–178, 376 (2004).Google Scholar
21. Noyan, I. C., Cohen, J. B., Residual Stress, (Springer-Verlag, New York, 1987).Google Scholar
22. Klug, H. P., Alexander, L. E., X-ray Diffraction Procedures, (Wiley, New York, 1974).Google Scholar
23. Parlinska-Wojtan, M., Karimi, A., Codet, O., et al., Surf. Coat. Technol. 188–189, 344 (2004).Google Scholar
24. Rafaja, D., Sima, M., Klemm, V., et al., J. Alloys and Compounds 378, 107 (2004).Google Scholar
25. Niederhofer, A., Nesladek, P., Männling, H., et al., Surf. Coat. Technol. 120–121, 173 (1999).Google Scholar
26. Carvalho, S., Rebouta, L., Cavaleiro, A., et al., Thin Solid Films 398–399, 391 (2001).Google Scholar
27. Rafaja, D., et al., Microstructure Analysis in Material Science, Freiberg, June 15 – 17, (2005).Google Scholar
28. Barna, P. B., in: Science and Technology of Thin Films, World Scientific Publ., p.1, (1995).Google Scholar
29. Yan, B. S., Huang, J. L., Lii, D. F., et al., Surf. Coat. Technol. 177–178, 209 (2004).Google Scholar
30. Karvankova, P., Karimi, A., Coddet, O., et al., ICMCTF San Diego, session B8 (2006).Google Scholar
31. Prange, R., Cremer, R., Neuschutz, D., Surf. Coat. Technol. 133–134, 208 (2000).Google Scholar