Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T23:02:39.499Z Has data issue: false hasContentIssue false

Thermal Stability and Electrical Properties of Ag(Al) Metallization

Published online by Cambridge University Press:  17 March 2011

Hyunchul C. Kim
Affiliation:
Department of Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287, U.S.A
N. David Theodore
Affiliation:
Digital DNATM Labs., Motorola Inc., 2100 E. Elliot Rd. MD-EL622, Tempe, AZ, 85284, U.S.A
James W. Mayer
Affiliation:
Department of Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287, U.S.A
Terry L. Alford
Affiliation:
Department of Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287, U.S.A
Get access

Abstract

The thermal stability and electrical resistivity of Ag(Al) alloy thin films on SiO2 are investigated and compared to pure Ag thin films by performing various analyses: Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), transmission electron microscopy (TEM), and four-point probe. The susceptibility to agglomeration of Ag on SiO2 layer is a drawback of Ag metallization. Ag(Al) thin films show good thermal stability on SiO2 layer without any diffusion barrier. The films are stable up to 600 °C for 1 hour in vacuum. Electrical resistivity of as-deposited Ag (5 at % Al) thin film is slightly higher than that of pure Ag thin film. However, the resistivity of Ag(Al) samples annealed at high temperatures (up to 600 °C for 1 hour in vacuum) remains constant due to the improvement of thermal stability (large reduction of agglomeration). This finding can impact metallization for thin film transistors (TFT) for displays, including flexible displays, and high-speed electronics due to lower resistivity value compared to Cu thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, H. C., Alford, T. L., and Allee, D. R., Appl. Phys. Lett. 81, 4287 (2002).CrossRefGoogle Scholar
2. Nguyen, P., Zeng, Y., and Alford, T. L., J. Vac. Sci. Technol. B 19, 158 (2001).CrossRefGoogle Scholar
3. Gadre, Kaustubh. S. and Alford, T. L., J. Vac. Sci. Technol. B 18, 2814 (2000).CrossRefGoogle Scholar
4. Lee, J. -H., Lee, S. -H., Yoo, K. -L., Kim, N. -Y., and Hwangbo, C. K., Surf. Coat. Technol. 158–159, 477 (2002).CrossRefGoogle Scholar
5. Fahland, M., Karlsson, P., and Charton, C., Thin Solid Films 392, 334 (2001).CrossRefGoogle Scholar
6. Seemann, R., Herminghaus, S., and Jacobs, K., Phys. Rev. Lett. 86, 5534 (2001).Google Scholar
7. Pennetta, C., Reggiani, L., and Trefán, G., Phys. Rev. Lett. 84, 5006 (2001).CrossRefGoogle Scholar
8. Nolan, T. P., Sinclair, R., and Beyers, R., J. Appl. Phys. 71, 720 (1992).CrossRefGoogle Scholar
9. Alford, T. L., Chen, Lingui, and Gadre, Kaustubh S., Thin Solid Films 429, 248 (2003).Google Scholar
10. Doolittle, L. R., Nucl. Instrum. Methods, Phys. Res. B 9, 344 (1985).CrossRefGoogle Scholar
11. Kim, H. C., Theodore, N. D., and Alford, T. L., in press J. Appl. Phys. (2004).Google Scholar