Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T22:34:13.315Z Has data issue: false hasContentIssue false

Thermal Properties of Thin Films

Published online by Cambridge University Press:  22 February 2011

J. C. Lambropoulos
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627 Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627
S.-S. Hwang
Affiliation:
Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627
Get access

Abstract

We summarize various measurements of the thermal conductivity of thin ceramic films which show that the thermal conductivity of thin films with thickness in the micron and sub-micron range may be up to two orders of magnitude lower than the thermal conductivityof the corresponding bulk solid. The reduction in the thin film effective thermal conductivity is attributed to the interfacial thermal resistance across the film/substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lambropoulos, J.C., Jacobs, S.D., Burns, S.J., Shaw-Klein, L., and Hwang, S.-S., 1991, in Thin-film heat transfer: properties and processing, ed. Alam, M. K. et al. HTD-vol. 203 (ASME Press, NY, 1991) p. 21.Google Scholar
[2] Decker, D.L., Koshigoe, L.G., and Ashley, E.J., 1986, in NBS Spec. Publ. 727, Laser induced damage in optical materials: 1984, (Government Printing Office, Washington DC, 1986) 291.Google Scholar
[3] Ristau, D. and Ebert, J., Applied Optics 25, 4571 (1986).Google Scholar
[4] Ogden, T.R., Rathsam, A.D., and Gilchrist, J.T., Mat. Lett. 5, 84 (1987).Google Scholar
[5] Reichling, M., Wu, Z.L., Welsch, E., Schafer, D., and Matthias, E., High frequency photothermal reflectivity and displacement measurements on thin film samples, presented at the 7th International Topical Meeting on Photoacoustic and Photothermal Phenomena (1991)Google Scholar
[6] Hasselman, D.P.H., Johnson, L.F., Bentsen, L.D., Syed, R., and Lee, H.L., Am. Ceram. Soc. Bull. 66, 799 (1987).Google Scholar
[7] Schaft, H.A., Suehle, J.S., and Mirel, P.G.A., in Proc. IEEE 1989 int. conf. on microelectronic test structures. Vol. 2, No. 1 (IEEE, New York, 1989), p. 121.Google Scholar
[8] Brotzen, F.R., Loos, P.J., and Brady, D.P., Thin Solid Films 207, 197 (1992).Google Scholar
[9] Powell, R.W., 1969, in ThermalConductivity, vol. 2, ed. Tye, R. P., (Academic Press, New York, 1969) p. 276.Google Scholar
[10] Lambropoulos, J.C., Jolly, M.R., Amsden, C.A., Sinicropi, M., Diakomihalis, D., and Jacobs, S.D., J. Appl. Phys. 66, 4230 (1989).Google Scholar
[11] Lambropoulos, J.C., Jacobs, S.D., Burns, S.J., and Shaw-Klein, L., in Fundamental issues in small scale heat transfer, ed. Bayazitoglu, Y. and Peterson, G.P., HTD-vol. 227 (ASME Press, NY, 1992), p. 37.Google Scholar
[12] Shaw-Klein, L., Burns, S.J., and Jacobs, S.D., S.D., 1991, in Electronic PackagingMaterialsScience, ed. Lillie, E. D. et al. (Mat. Res. Soc. Proc. 203, Pittsburgh, PA, 1991) p. 235.Google Scholar
[13] Shaw-Klein, L., Bums, S.J., Kadin, A.M., Jacobs, S.D., and Mallory, D.S., Supercond. Sci. Technol., 5, 368 (1992).Google Scholar
[14] Henager, C.H. Jr, and Pawlewicz, W.T., Thermal conductivities of thin, sputtered optical films, Rpt. PNL-SA-19687, DE92 004486, Pacific Northwest Laboratory, May (1991).Google Scholar
[15] Shaw-Klein, L.J., Jacobs, S.D., Bums, S.J., and Lambropoulos, J.C., in Laser-induced damage in optical materials: 1991, SPIE Proceedings vol. 1624 (SPIE, Bellingham, WA, 1991), p. 346.Google Scholar
[16] Kuo, B.S.W., Li, J.C.M., and Schmid, A.W., Appl. Phys. A55, 289 (1992).Google Scholar
[17] Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A., and Gardinier, C.F., Appl. Phys. Lett. 60, 1576 (1992).Google Scholar