Skip to main content Accessibility help
×
Home

Thermal Equilibrium Concentrations and Effects of Ga Vacancies in n-TYPE GaAs

  • Teh Y. Tan (a1), Homg-Ming You (a1) and Ulrich M. Gösele (a1)

Abstract

We have calculated the thermal equilibrium concentrations of the various Ga vacancy species in GaAs. That of the triply-negatively-charged Ga vacancy, V 3 Ga has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and ndoping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V 3 Ga concentration, Ceq vGa .3−(n), has been found to exhibit a temperature independence or a negative temperature dependence, in the sense that the Ceq vGa .3−(n) value is either unchanged or increases as the temperature is lowered. This is contrary to the normal positive temperature dependence of point defect theerqmal equilibrium concentrations, which decreases as the temperature is lowered. This Ceq vGa .3−(n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation thatV 3− Ga has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena. Furthermore, there exist also a few quantitative data which are in agreement with the presently calculated results.

Copyright

References

Hide All
1. Tan, T. Y. and Gosele, U. M., Appl. Phys. Lett. 52, 1240 (1988).
2. Yu, S., Gösele, U. M., and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).
3. Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., and Harbison, J. P., Appl. Phys. Lett. 50, 1823 (1987).
4. Tan, T. Y., You, H.-M., Yu, S., Gösele, U. M., Jäger, W., Boeringer, D. W., Zypman, F., Tsu, R., and Lee, S.-T.: J. Appl. Phys. 72, 5206 (1992).
5. You, H.-M., Gösele, U. M., and Tan, T. Y., J. Appl. Phys., in press (1993).
6. Tan, T. Y., Mater. Sci. Eng. B 10, 227 (1991).
7. Schockley, W. and Last, J. T., Phys. Rev. 107, 392 (1957).
8. Tan, T. Y., Gösele, U. M., and Yu, S., Cri. Rev. Solid Sta. Mater. Sci. 17, 47 (1991).
9. Baraff, G. A. and Schlüter, M., Phys. Rev. Lett. 55,1327 (1985).
10. Arthur, J. R., J. Phys. Chem. Solids 28, 2257 (1967).
11. Uematsua, M. and Maezawa, K., Jap. J. Appl. Phys. 29, L527 (1990).
12. McQuaid, S. A., Newman, R. C., Missous, M., and O'Hagan, S., Appl. Phys. Lett. 61, 3008 (1992).
13. McQuaid, S. A., Newman, R. C., Missous, M., and O'Hagan, S., J. Cryst. Growth, in press (1993).
14. Williams, G. M., Cullis, A. G., and Stirland, D. J., Appl. Phys. Lett. 59, 2585 (1991).
15. Yu, H. M., Gösele, U., and Tan, T. Y., submitted to J. Appl. Phys. (1993).
16. Petroff, P. and Hartman, R. L., J. Appl. Phys. 45, 3899 (1974).
17. Hutchinson, P. W. and Dobson, P. S., Appl. Phys. Lett. 26, 250 (1975).
18. O'Hara, S., Hutchinson, P. W., and Dobson, P. S., Appl. Phys. Lett. 30, 368 (1977).
19. For a review, see Ueda, O., J. Electrochem. Soc. 135, 12C (1988).
20. Hutchinson, P. W., Dobson, P. S., Wakefield, B., and O'Hara, S., Solid-State Electron. 21, 1413 (1978).
21. Uematsu, M. and Wada, K., Appl. Phys. Lett. 58, 2015 (1991).
22. Uematsu, M. and Wada, K., Mater. Sci. Forum 83–87, 1551 (1992).
23. Yu, S., Tan, T. Y., and Gösele, U. M., J. Appl. Phys. 69, 3547 (1991).
24. Uematsu, M., Yamada, K., and Wada, K., J. Appl. Phys. 72, 2520 (1992).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed