Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T10:51:57.540Z Has data issue: false hasContentIssue false

Thermal Equilibrium Concentrations and Effects of Ga Vacancies in n-TYPE GaAs

Published online by Cambridge University Press:  22 February 2011

Teh Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
Homg-Ming You
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
Ulrich M. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
Get access

Abstract

We have calculated the thermal equilibrium concentrations of the various Ga vacancy species in GaAs. That of the triply-negatively-charged Ga vacancy, V3Ga has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and ndoping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V3Ga concentration, CeqvGa.3−(n), has been found to exhibit a temperature independence or a negative temperature dependence, in the sense that the CeqvGa.3−(n) value is either unchanged or increases as the temperature is lowered. This is contrary to the normal positive temperature dependence of point defect theerqmal equilibrium concentrations, which decreases as the temperature is lowered. This CeqvGa.3−(n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation thatV3−Ga has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena. Furthermore, there exist also a few quantitative data which are in agreement with the presently calculated results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tan, T. Y. and Gosele, U. M., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
2. Yu, S., Gösele, U. M., and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).Google Scholar
3. Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., and Harbison, J. P., Appl. Phys. Lett. 50, 1823 (1987).Google Scholar
4. Tan, T. Y., You, H.-M., Yu, S., Gösele, U. M., Jäger, W., Boeringer, D. W., Zypman, F., Tsu, R., and Lee, S.-T.: J. Appl. Phys. 72, 5206 (1992).Google Scholar
5. You, H.-M., Gösele, U. M., and Tan, T. Y., J. Appl. Phys., in press (1993).Google Scholar
6. Tan, T. Y., Mater. Sci. Eng. B 10, 227 (1991).Google Scholar
7. Schockley, W. and Last, J. T., Phys. Rev. 107, 392 (1957).Google Scholar
8. Tan, T. Y., Gösele, U. M., and Yu, S., Cri. Rev. Solid Sta. Mater. Sci. 17, 47 (1991).Google Scholar
9. Baraff, G. A. and Schlüter, M., Phys. Rev. Lett. 55,1327 (1985).Google Scholar
10. Arthur, J. R., J. Phys. Chem. Solids 28, 2257 (1967).Google Scholar
11. Uematsua, M. and Maezawa, K., Jap. J. Appl. Phys. 29, L527 (1990).Google Scholar
12. McQuaid, S. A., Newman, R. C., Missous, M., and O'Hagan, S., Appl. Phys. Lett. 61, 3008 (1992).Google Scholar
13. McQuaid, S. A., Newman, R. C., Missous, M., and O'Hagan, S., J. Cryst. Growth, in press (1993).Google Scholar
14. Williams, G. M., Cullis, A. G., and Stirland, D. J., Appl. Phys. Lett. 59, 2585 (1991).Google Scholar
15. Yu, H. M., Gösele, U., and Tan, T. Y., submitted to J. Appl. Phys. (1993).Google Scholar
16. Petroff, P. and Hartman, R. L., J. Appl. Phys. 45, 3899 (1974).Google Scholar
17. Hutchinson, P. W. and Dobson, P. S., Appl. Phys. Lett. 26, 250 (1975).Google Scholar
18. O'Hara, S., Hutchinson, P. W., and Dobson, P. S., Appl. Phys. Lett. 30, 368 (1977).Google Scholar
19. For a review, see Ueda, O., J. Electrochem. Soc. 135, 12C (1988).Google Scholar
20. Hutchinson, P. W., Dobson, P. S., Wakefield, B., and O'Hara, S., Solid-State Electron. 21, 1413 (1978).Google Scholar
21. Uematsu, M. and Wada, K., Appl. Phys. Lett. 58, 2015 (1991).Google Scholar
22. Uematsu, M. and Wada, K., Mater. Sci. Forum 83–87, 1551 (1992).Google Scholar
23. Yu, S., Tan, T. Y., and Gösele, U. M., J. Appl. Phys. 69, 3547 (1991).Google Scholar
24. Uematsu, M., Yamada, K., and Wada, K., J. Appl. Phys. 72, 2520 (1992).Google Scholar