Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T07:49:21.800Z Has data issue: false hasContentIssue false

Thermal behavior of Metal-Metal-Silicon or Metal-Silicide-Silicon Structures for Pt, Ni, and Cr

Published online by Cambridge University Press:  22 February 2011

A. J. Barcz
Affiliation:
California Institute of Technology, Pasadena, CA. 91125, U.S.A.
M. Bartur
Affiliation:
California Institute of Technology, Pasadena, CA. 91125, U.S.A.
Get access

Abstract

We report on a study of thermal interactions between pairs of Ni, Cr, and Pt films and their silicides on a Si substrate. For each pair of metals M1, M2, four systems were investigated: Si−M12, Si−M2 −M2, Si−M1 Si−M2 and Si−M2Si−M1 giving altogether twelve initial combinations. Samples were annealed in the temperature range of 300−700°C and the analysis was made by Backscattering Spectrometry (BS). It is found that double layers of uniform silicides can be grown when the Cr silicide is the top layer. The rate of CrSi2 formation in this case is less then that reported for CrSi2 growth on Si substrate. In all other cases we find some intermixing. Impurities are found to effect the growth kinetics and the layer morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nicolet, M-A. and Lau, S. S. in: VLSI Electronics, Einspruch, N. G., ed., Vol. 6, Einspruch, N. G. and Larrabee, G. B., eds. (Academic Press, New York, 1983), Chap. 6.Google Scholar
2. Nicolet, M-A. and Bartur, M., J. Vac. Sci. Technol. 19, 786, (1981).CrossRefGoogle Scholar
3. Bartur, M. and Nicolet, M-A., Thin Solid Films, 91, 89 (1982).CrossRefGoogle Scholar
4. Thomas, S. and Terry, L., J. Appl. Phys. 47, 301 (1976).CrossRefGoogle Scholar
5. Ottaviani, G., Tu, K. N., Thompson, R. D., Mayer, J. W., and Lau, S.S., J. Appl. Phys. 54, 4614 (1983).CrossRefGoogle Scholar
6. Sinha, A. K. and Smith, T. E., J. Appl. Phys. 44, 3465 (1973).CrossRefGoogle Scholar
7. Olowolafe, J. O., Nicolet, M-A., and Mayer, J. W., J. Appl. Phys. 47, 5182 (1976).CrossRefGoogle Scholar
8. Baglin, J. E. E., d’Heurle, F. M., Hammer, W. N., and Petersson, S., Nucl. Instr. Meth. 168, 491 (1980).CrossRefGoogle Scholar
9. Finstad, T. G. and Nicolet, M-A., J. Appl. Phys. 50, 303, (1979).CrossRefGoogle Scholar
10. Naudé, M. O., Pretorius, R., and Marais, D. J., Thin Solid Films, 89, 339 (1982).CrossRefGoogle Scholar
11. Morgon, A. E. and Ellwanger, R. C., J. Vac. Sci. Technol. 1, 472 (1983).Google Scholar
12. Ottaviani, G. and Tu, K. N., Appl. Phys. Lett. 36, 331 (1980).CrossRefGoogle Scholar
13. Pretorius, R., Olowolafe, J. O., and Mayer, J. W., Phil. Mag. A, 37, 327 (1978).CrossRefGoogle Scholar
14. Zingu, E. C., Commrie, C., and Pretorius, R., J. Appl. Phys. 54, 2392 (1983).CrossRefGoogle Scholar
15. Finstad, T. G., Thin Solid Films, 51, 411 (1978).CrossRefGoogle Scholar
16. Lien, C.-D., Wieluński, L. S., and Nicolet, M-A., Thin Solid Films, 104, 235 (1983).CrossRefGoogle Scholar