Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T19:20:36.891Z Has data issue: false hasContentIssue false

Thermal and Electrical Transport Measurements of Single-Walled Carbon Nanotube Strands

Published online by Cambridge University Press:  01 February 2011

Diana-Andra Borca-Tasciuc
Affiliation:
Mechanical and Aerospace Engineering Department, University of California at Los Angeles Los Angeles, CA 90095, U.S.A.
Yann LeBon
Affiliation:
ENSMA, Futuroscope, France
Claire Nanot
Affiliation:
ENSMA, Futuroscope, France
Gang Chen
Affiliation:
Mechanical and Aerospace Engineering Department, University of California at Los Angeles Los Angeles, CA 90095, U.S.A. Mechanical Engineering Department, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A.
Theodorian Borca-Tasciuc*
Affiliation:
Mechanical and Aerospace Engineering Department, Rensselaer Polytechnic Institute Troy, NY 12180, U.S.A.
Anyuan Cao
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute Troy, NY 12180, U.S.A.
Robert Vajtai
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute Troy, NY 12180, U.S.A.
Pulikel M. Ajayan
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute Troy, NY 12180, U.S.A.
*
* Corresponding author. Electronic address: borcat@rpi.edu.
Get access

Abstract

This work reports temperature dependent thermal and electrical properties characterization of long (mm size) single-walled carbon nanotube strands. Electrical properties are measured using a 4-probe method. Thermal conductivity and specific heat capacity are determined using an AC driven, self-heating method. Normalized values of resistivity, thermal conductivity, specific heat, thermal diffusivity, and the temperature coefficient of resistance are reported. The trends observed in the temperature dependent properties are comparable with previously published data on multi-walled carbon nanotube strands measured with a similar technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C., Science of Fullerenes and Carbon Nanotubes, Academic Press (1995).Google Scholar
2. Yi, W., Lu, L., Dian-Lin, Z., Pan, Z. W., and Xie, S. S., Phys. Rev. B, 59, R9015 (1999)Google Scholar
3. Borca-Tasciuc, T., Hapenciuc, C. L., Wei, B., Vajtai, R., and Ajayan, P. M., “Anisotropic thermal diffusivity of aligned multiwalled carbon nanotube arrays,” in Proc. IMECE2002, November 17–22, 2002, New Orleans, Louisiana: CD-ROM.Google Scholar
4. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., Phys. Rev. Lett., 87, 215502–1 (2001).Google Scholar
5. Hone, J., Whitney, M., Piskoti, C., and Zettl, A., Phys. Rev. B, 59, R2514 (1999).Google Scholar
6. Lu, L., Yi, W. and Zhang, D. L., Rev. Sci. Instr., 72, 2996 (2001)Google Scholar
7. Journet, C., Maser, M. K., Bernier, P., Loiseau, A., de la Chapelle, M. L., Lefrant, S., Deniard, P., Lee, R., Fischer, J. E., Nature, 388, 756 (1997).Google Scholar
8. Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., Weisman, R. B., Science 298, 2361 (2002).Google Scholar
9. Cahill, D., Rev. Sci. Instr., 61, 802 (1990).Google Scholar
10. Saito, R., Takeya, T., Kimura, T., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. B., 57, 4145 (1998).Google Scholar
11. Ziman, J. M., Electron and phonons, Oxford Press, (1960).Google Scholar