Skip to main content Accessibility help

Theory of conductive filaments in threshold switches

  • V. G. Karpov (a1), M. Nardone (a1) and M. Simon (a1)


We show that the average parameters of conductive filaments and the related characteristics of threshold switches can be described thermodynamically based on the system free energy. In particular, we derive analytical expressions for the filament radius as a function of applied bias, and its current-voltage characteristics, the observations of which have remained without mathematical description for about 30 years. Our theory is extendible to filament transients and allows for efficient numerical simulations of arbitrary switching structures. This new understanding may be important in the advancement of novel technologies that combine threshold switches with phase change memory, such as 3D architectures.



Hide All
1. Bedeschi, F., Fackenthal, R., Resta, C., Donze, E. M., Jagasivamani, M., Buda, E. C., Pellizzer, F., Chow, D. W., Cabrini, A., Calvi, G., Faravelli, R., Fantini, A., Torelli, G., Mills, D., Gastaldi, R., and Casagrande, G., IEEE Journal of Solid-State Circuits 44, 217 (2009).
2. Adler, D., Henisch, H.K., and Mott, S.N., Rev. Mod. Phys. 50, 209 (1978).
3. Kau, D. C., Tang, S., Karpov, I. V., Dodge, R., Klehn, B., Kalb, J., Strand, J., Diaz, A., Leung, N., Wu, J., Lee, S., Langtry, T., Chang, K., Papagianni, C., Lee, J., Hirst, J., Erra, S., Flores, E., Righos, N., Castro, H. and Spadini, G., Proceedings of the IEEE IEDM, Baltimore (IEEE, New York, 2009), p. 617.
4. Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450 (1968).
5. Petersen, K. E. and Adler, D., J. Appl. Phys. 47, 256 (1976).
6. Ridely, B. K., Proc. Phys. Soc. 82, 954 (1963).
7. Ross, J., Thermodynamics and Fluctuations Far from Equilibrium (Springer, New York, 2008), p. 119.
8. Redaelli, A., Pirovano, A., Benvenuti, A., and Lacaita, A. L., J. Appl. Phys. 103, 11 (2008).
9. Petersen, K. E. and Adler, D., J. Appl. Phys. 50, 5065 (1979).
10. Karpov, I. V., Mitra, M., Kau, D., Spadini, G., Kryukov, A. Y., and Karpov, V. G., Appl. Phys. Lett. 92, 173501 (2008); V. G. Karpov, Y. A. Kryukov, I. V. Karpov, and M. Mitra, Phys. Rev. B 78, 052201(2008).
11. Lifshitz, E. M. and Pitaevskii, L. P., Physical Kinetics (Elsevier, Amsterdam, Boston, 2008).
12. Karpov, V. G., Nardone, M., and Simon, M. J. Appl. Phys. 109 114507 (2011).
13. Weinberg, M. C. and Nelson, G. F., J. Non-Cryst. Solids 74, 177 (1985); C. Barrett, W. Nix, and A. Tetelmam, The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, NJ, 1973); X. S. Miao, L. P. Shi, H. K. Lee, J. M. Li, R. Zhao, P. K. Tan, K. G. Lim, H. X. Yang, and T. C. Chong, Jpn. J. Appl. Phys., Part 1 45, 3955(2006).
14. Owen, A. E. and Robertson, J. M., IEEE Trans. Electron Devices ED-20, 105 (1973).
15. Mott, N. F. and Davis, E. A., Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979).


Theory of conductive filaments in threshold switches

  • V. G. Karpov (a1), M. Nardone (a1) and M. Simon (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed