Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-07T21:58:37.787Z Has data issue: false hasContentIssue false

Theoretical Study of Hydrogen in Cubic Gan

Published online by Cambridge University Press:  15 February 2011

Stefan K. Estreicher
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409 - USA
Djordje M. Maric
Affiliation:
Swiss Center for Scientific Computing, 6928 Manno- Switzerland
Get access

Abstract

Preliminary results of theoretical studies of hydrogen and hydrogen-related defects in cubic GaN are reported. Our calculations contrast with those of other authors in that the host crystal is represented by molecular clusters rather than periodic supercells, and that they are obtained using an all-electron methodology rather than the single effectiveparticle approach of density-functional theory. Our results confirm some predictions of other authors but conflict with others.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review of the history and key properties of GaN, see Pankove, J.I., MRS Proc. 162, 515 (1990).Google Scholar
2. ‘GaN and Related Materials’, ed. Pearton, S.J. (Gordon & Breach, New York, in print).Google Scholar
3. Zavada, J.M., Wilson, R.G., Abernathy, C.R., and Pearton, S.J., Appl. Phys. Lett. 64, 2724 (1994).Google Scholar
4. Pearton, S.J., Abernathy, C.R., and Ren, F., Electrochem. Lett. 30, 527 (1994).Google Scholar
5. Brandt, M.S., Johnson, N.M., Molnar, R.J., Singh, R., and Moustakas, T.D., Appl. Phys. Lett. 64, 2264 (1994).Google Scholar
6. Molnar, B., Eddy, C.R. Jr.,, and Doverspike, K., ECS Proc. 95 21, 236 (1995).Google Scholar
7. Estreicher, S.K., Mat. Sci. Engr. Reports 14, 319 (1995).Google Scholar
8. Pearton, S.J., Corbett, J.W., and Stavola, M.J., ‘Hydrogen in Crystalline Semiconductors ’ (Springer-Verlag, Berlin, 1992).Google Scholar
9. ‘Hydrogen in Compound Semiconductors’, ed. Pearton, S.J., Mat. Sci. Forum 148–149 (Trans Tech, Aedermannsdorf, Switzerland, 1994).Google Scholar
10. See the chapter by Estreicher, S.K. and Boucher, D.E. in Ref. 2.Google Scholar
11. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
12. Van Vechten, J.A., Zook, J.D., Horning, R.D., and Goldenberg, B., Jpn. J. Appl. Phys. 31, 3662 (1992).Google Scholar
13. Ohba, Y. and Hatano, A., Jpn. J. Appl. Phys. 33, L1367 (1994).Google Scholar
14. Brandt, M.S., IIIAger, J.W., Götz, W., Johnson, N.M., Harris, J.S. Jr.,, Molnar, R.J., and Moustakas, T.D., Phys. Rev. B 49, 14758 (1994).Google Scholar
15. Pearton, S.J., private communication.Google Scholar
16. Pearton, S.J., Shul, R.J., Wilson, R.G., Ren, F., Zavada, J.M., Abernathy, C.R., Vartuli, C.B., Lee, J.W., Mileham, J.R., and Mackenzie, J.D., ECS Proc. 95 21, 178 (1995).Google Scholar
17. Neugebauer, J. and Van de Walle, C.G., Phys. Rev. Lett. 75, 4452 (1995).Google Scholar
18. Bosin, A., Fiorentini, V., and Vanderbilt, D., MRS Proc. 395 (1996) in print.Google Scholar
19. Ogino, T. and Aoki, M., Jpn. J. Appl. Phys. 19, 2395 (1980).Google Scholar
20. See the discussion in Ref. 7 and Throckmorton, L. and Marynick, D.S., J. Comp. Chem. 6, 652 (1985).Google Scholar
21. Armstrong, D.R., Perkins, P.G., and Stewart, J.J.P., J. Chem. Soc. Dalton Trans. (1973), p. 838.Google Scholar