Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T02:21:37.275Z Has data issue: false hasContentIssue false

Theoretical Studies of Grain Boundaries in Ni, Al, and Ni3Al with and without Boron

Published online by Cambridge University Press:  26 February 2011

S. P. Chen
Affiliation:
Los Alamos National Laboratory Los Alamos, New Mexico 87545
A. F. Voter
Affiliation:
Los Alamos National Laboratory Los Alamos, New Mexico 87545
R. C. Albers
Affiliation:
Los Alamos National Laboratory Los Alamos, New Mexico 87545
A. M. Boring
Affiliation:
Los Alamos National Laboratory Los Alamos, New Mexico 87545
P. J. Hay
Affiliation:
Los Alamos National Laboratory Los Alamos, New Mexico 87545
Get access

Abstract

Atomistic simulations of [001] symmetric tilt grain boundaries in Ni, Al, and Ni3Al are presented. The atomistic structures of the simulated grain boundaries have been analyzed in terms of the structural unit model, which is found to be of limited utility for intermetallics. Simulation results show that boron segregates more strongly to grain boundaries than to free surfaces, and strengthens the grain boundary. Good cohesive properties of the grain boundaries occur when both boron and some segregated Ni are present. The Ni and B are found to co-segregate to the Ni3AI boundary with an energy advantage of ∼ 0.5eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ballufi, R. W.,ed.,“Grain Boundaries Structure and Kinetics”, 1980, American Society for Metals, Metals Park, Ohio.Google Scholar
2. Chen, S. P., Voter, A. F., and Srolovitz, D. J., Scripta Metall. 20, 1389 (1986).Google Scholar
3. Chen, S. P., Voter, A. F., and Srolovitz, D. J., MRS Proceedings, 81, 45 (1987).Google Scholar
4. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).Google Scholar
5. Chen, S. P., Voter, A. F., and Srolovitz, D. J., Phys. Rev. Lett. 57, 1308 (1986).Google Scholar
6. Chen, S. P., Voter, A. F., and Srolovitz, D. J., MRS Proceedings, 82, 515 (1987).Google Scholar
7. Voter, A. F. and Chen, S. P., MRS Proceedings, 82, 175 (1987).Google Scholar
8. Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., Srolovitz, D. J., Hay, P. J., and Mueller, F. M., to be published.Google Scholar
9. Hasson, G. C. and Goux, C., Scripta Metall. 5, 889 (1971).Google Scholar
10. Murr, L. E., “Interfacial Phenomena in Metals and Alloys”, (1975) Addison-Wesley, Reading, Ma.Google Scholar
11. Sutton, A. P. and Vitek, V., Phil. Trans. Roy. Soc. (Lond.) A309, 1 (1983).Google Scholar
12. Wang, G. J., Sutton, A. P., and Vitek, V., Acta Metall. 32, 1093 (1984).Google Scholar
13. McMahon, C. J. Jr., and Vitek, V., Acta Metall. 27, 507 (1979).Google Scholar
14. Chen, S. P., Voter, A. F., and Srolovitz, D. J., submitted to Journal of Materials Research.Google Scholar
15. Hack, J. E., Srolovitz, D. J., and Chen, S. P., Scripta Metall. 20, 1699 (1986).Google Scholar
16. Hack, J. E., Chen, S. P., and Srolovitz, D. J., Acta Metall., in press.Google Scholar
17. Chen, S. P., Voter, A. F., and Srolovitz, D. J., J. de Phys., in press.Google Scholar