Skip to main content Accessibility help
×
Home

Theoretical Performance Of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers

  • Michael E. Flatté (a1), J. T. Olesberg (a1) and C. H. Grein (a2)

Abstract

We present calculations of the intersubband absorption and Auger recombination rate of superlattices based on the InAs/GaInSb material system involving more than two layers in the repeating unit cell and strain balanced to match the GaSb substrate. We demonstrate theoretically the presence of final-state optimization in a 4.0 μm strain-balanced brokengap superlattice. This system's band structure is optimized not only at the band edge, where the valence density of states has been reduced, but also at resonance energies, where reside final states for Auger and intersubband processes. The spectral structure of the intersubband absorption, which for some wavelengths near the lasing wavelength can exceed 500 cm−1 at lasing threshold, has been considered when designing this active region. Fortunately, final-state optimized designs which minimize Auger recombination tend to minimize intersubband absorption as well. The effectiveness of final-state optimization is evaluated by considering band structures with identical band edge structure, but different final-state structure.

Copyright

References

Hide All
1. Hasenberg, T. C., Miles, R. H., Kost, A. R., and West, L., IEEE J. Q. E. 33, 1403 (1997).
2. Choi, H.K., Turner, G.W. and Manfra, M.J., Electron. Lett. 32, 1296 (1996); H.K. Choi, G.W. Turner, M.J. Manfra and M.K. Connors, Appl. Phys. Lett. 68, 2936 (1996).
3. Malin, J.I., Meyer, J.R., Felix, C.L., Lindle, J.R., Goldberg, L., Hoffman, C.A., and Bartoli, F.J., Appl. Phys. Lett. 68, 2976 (1996).
4. Felix, C. L., Meyer, J. R., Vurgaftan, I., Lin, C. H., Murry, S. J., Zhang, D., and Pei, S. S., IEEE Photonics Technol. Lett. 9, 734 (1997).
5. Ashley, T., Elliott, C. T., Jeffries, R., Johnson, A. D., Pryce, G. J., White, A. M., and Carroll, M., Appl. Phys. Lett. 70, 931 (1997).
6. Lee, H., York, P. K., Menna, R. J., Martinelli, R. U., Garbuzov, D. Z., Narayan, S. Y., and Connolly, J. C., Appl. Phys. Lett. 66, 1942 (1995).
7. Kurtz, S. R., Allerman, A. A., and Biefeld, R. M., Appl. Phys. Lett. 70, 3188 (1997).
8. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., and Cho, A.Y., Science 264, 553 (1994). J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, Electron. Lett. 32, 560 (1996).
9. Flatté, M. E., Olesberg, J. T., Anson, S. A., Boggess, T. F., Hasenberg, T. C., Miles, R. H., and Grein, C. H., Appl. Phys. Lett. 70, 3212 (1997).
10. Olesberg, J. T., Anson, S. A., McCahon, S. W., Flatté, M. E., Boggess, T. F., Chow, D. H., and Hasenberg, T. C., Appl. Phys. Lett. 72, 229 (1998).
11. Grein, C.H., Young, P.M., Flatté, M.E., and Ehrenreich, H., J. Appl. Phys. 78, 7143 (1995).
12. Flatté, M. E., Hasenberg, T. C., Olesberg, J. T., Anson, S. A., Boggess, T. F., Yan, C., and McDaniel, D. L., Jr., Appl. Phys. Lett. 71, 3764 (1997).
13. Vodopyanov, K. L., Graener, H., Phillips, C. C., and Tate, T. J., Phys. Rev. B 46, 13194 (1992).
14. Brand, S. and Abram, R. A., J. Phys. C 17, L571 (1984).
15. Haug, A., J. Phys. C 16, 4159 (1983).
16. Chazapis, V., Blom, H. A., Vodopyanov, K. L., Norman, A. G., and Phillips, C. C., Phys. Rev. B 52, 2516 (1995).10.1103/PhysRevB.52.2516

Theoretical Performance Of Mid-Infrared Broken-Gap Multilayer Superlattice Lasers

  • Michael E. Flatté (a1), J. T. Olesberg (a1) and C. H. Grein (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed