Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-30T22:57:43.513Z Has data issue: false hasContentIssue false

Theoretical Modeling and Experimental Characterization of Planar Defects in Y2Ba4Cu6+Xo14+X

Published online by Cambridge University Press:  26 February 2011

C.P. Burmester
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720 and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
M. Fendorf
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720 and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
L.T. Wille
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431
R. Gronsky
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, I Cyclotron Road, Berkeley, CA 94720 and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
Get access

Extract

Crystallographic defects and phase transformations in the system Y2Ba4Cu6+xO14+x(0≤≤4) are investigated by high resolution transmission electron microscopy (TEM) and static lattice, three dimensional Monte Carlo computer simulations. High resolution images of partially transformed (x=2 to x=l) material reveal a prevalence of CuO planar defects (stackingfaults) associated with the transformation and an absence of disturbance to the perovskite Ba-Y-Ba blocks. An atomic mechanism involving the intercalation and removal of extra CuO planes by partial dislocation climb, and requiring only a-b plane diffusion, is developed for the formation of such planar defects during changes in the layered YBaCuO crystal structure. Monte Carlo simulations based on the proposed transformation mechanism accurately reproduce the observed defects andknown equilibrium structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jin, S.,Tiefel, T.H., Nakahara, S., Graebner, J.E., O'Brien, H.M., Fastnacht, R.A., and Kammlot, G.W., Appl. Phys. Lett. 56, 1287 (1990).CrossRefGoogle Scholar
2. Weir, S.T., Nellis, W.J., Kramer, M.J., Seaman, C.L., Early, E.A., and Maple, sM.B., Appl.Phys Lett. 56, 2042 (1990).CrossRefGoogle Scholar
3. Masegi, T., Terai, T., Takahashi, Y., Enomoto, Y., and Kubo, S., Jpn. J. Appl. Phys, 28:9, L1521 (1989).CrossRefGoogle Scholar
4. Char, K., Barton, R.W., Marshall, A.F., Kapitulnik, A., and Laderman, S.S., Physica C 152, 475 (1988).CrossRefGoogle Scholar
5. Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336, 660 (1988).CrossRefGoogle Scholar
6. Morris, D.E., Nickel, J.H., Wei, J.Y.T., Asmar, N.G., Scott, J.S., Scheven, U.M., Hultgren, C.T., Markelz, A.G., Post, J.E., Heaney, P.J., Veblen, D.R., and Hazen, R.M., Phys.Rev. B 39, 7347 (1989).CrossRefGoogle Scholar
7. Zandbergen, H.W., Gronsky, R., Wang, K., and Thomas, G., Nature 331, 596 (1988).CrossRefGoogle Scholar
8. Fortunati, K., Fendorf, M., Powers, M., Burmester, C., and Gronsky, R., in: Proceedings of the 47th annual meeting of the Electron Microscopy Society of America, edited by Bailey, G. W. (San Francisco Press, Inc., San Francisco, 1989), pp 714715.Google Scholar
9. Kilaas, R., in: Proceedings of the 45th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W. (San Francisco Press, Inc., San Francisco, 1987).Google Scholar
10. Zandbergen, H.W., Gronsky, R., and Thomas, G., Phys. Stat. Sol. A 105, 207 (1988).CrossRefGoogle Scholar
11. Fendorf, M., Kvam, E., and Gronsky, R., in: High Temperature Superconductors: Fundamental Properties and Novel MaterialsProcessing, edited by Narayan, J., Chu, C.W., Schneemeyer, L.F., and Christen, D.K. (Materials Research Society, Pittsburgh, 1990), MRS Symp. Proc. Vol. 169, pp. 789792.Google Scholar
12. Poole, C. P. Jr., Datta, T, and Farach, H. A., Copper Oxide Superconductors (John Wiley & Sons, New York, 1988).Google Scholar
13 Burmester, C. P. and Wille, L. T., Phys. Rev. B 40, 8795 (1989).CrossRefGoogle Scholar
14. Zandbergen, H. W., Gronsky, R., and van Tendeloo, G., J. Supercond. 3, 103 (1989).Google Scholar
15. Streiffer, S.K., Lairson, B.M., Eom, C.B., Marshall, A.F., Bravman, J.C., and Geballe, T.H. in: High-Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Dahmen, U., and Smith, D.J. (Materials Research Society, Pittsburgh, 1990), MRS Symp. Proc.Vol. 183, pp. 363368.Google Scholar
16. Kirczenow, G., Phys. Rev. Lett. 55, 2810 (1985).CrossRefGoogle Scholar
17. Fendorf, M., Burmester, C.P., Wille, L.T., and Gronsky, R., J. Less-Common Metals 164, 84 (1990).CrossRefGoogle Scholar
18. Fendorf, M., Burmester, C.P., Wille, L. T., and Gronsky, R., Appl. Phys. Lett. 57 (1990), in press.CrossRefGoogle Scholar
19. Karpinski, J., Rusiecki, S., Kaldis, E., and Jilek, E., J. Less-Common Metals 164, 3 (1990).CrossRefGoogle Scholar
20. Ramesh, R., Jin, S., Nakahara, S., and Tiefel, T.H., Appl. Phys. Lett. 57, 1458 (1990).CrossRefGoogle Scholar
21. Phillips, J.C., Physics of High-Tc Superconductors, (Academic Press, San Diego, 1989).Google Scholar
22. James, D. St., Thomas, E.J., and Sarma, G., Type H Superconductivity (Pergamon, Oxford, 1969).Google Scholar
23. Tinkham, M., Introduction to Superconductivity (McGraw-Hill, 1975; Krieger, Malabar, Fl., 1980, 1985).Google Scholar
24. de Trey, P., Gygax, S., and Jan, J.P., J. Low Temp. Phys. 11, 421 (1973).CrossRefGoogle Scholar