Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T22:49:25.295Z Has data issue: false hasContentIssue false

Theoretical Investigation of Twist Boundaries in Germanium

Published online by Cambridge University Press:  26 February 2011

M. C. Payne
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
P. D. Bristowe
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
J. D. Joannopoulos
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

Results of the first completely ab-initio investigation of the microscopic structure of a grain boundary in a semiconductor are presented. Using the molecular dynamics simulated annealing method for performing total energy calculations within the LDA and pseudopotential approximations, the σ=5(001) twist boundary in germanium is studied. A low energy structure is identified which exhibits a rigid body translation and a small contraction at the boundary.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grovenor, C.R.M., J. Phys. C: Solid State Phys. 18, 4079 (1985).CrossRefGoogle Scholar
2. Bourret, A. and Bacmann, J.J., Surf. Sci. 162, 495 (1985).CrossRefGoogle Scholar
3. Papon, A.M., Petit, M. and Bacmann, J.J., Phil. Mag. A49, 573 (1984).Google Scholar
4. Bacmann, J.J., Papon, A.M., Petit, M. and Silvestre, G., Phil. Mag. A51, 697 (1985).Google Scholar
5. Vaudin, M.D., Lamarre, P.A., Schmuckle, F. and Sass, S.L., Phil. Mag. A54. 21 (1986).Google Scholar
6. Hornstra, J., Physica 26, 198 (1960).CrossRefGoogle Scholar
7. Wetzel, J.T., Levi, A.A. and Smith, D.A., Mat. Res. Soc. Symp. Proc. 63, 157 (1986).Google Scholar
8. Thomson, R.E. and Chadi, D.J., Phys. Rev. B 21, 889 (1984).CrossRefGoogle Scholar
9. DiVincenzo, D.P., Alerhand, O.L., Schlüter, M. and Wilkins, J.W., Phys. Rev. Lett. 56, 1925 (1986).CrossRefGoogle Scholar
10. Chou, M.Y., Cohen, M.L. and Louie, S.G., Phys. Rev. B32, 7979 (1985).Google Scholar
11. Van de Walle, G. and Martin, M., Mat. Res. Soc. Symp. Proc. 63, 21 (1986).Google Scholar
12. Zhang, S.B., Cohen, M.L. and Louie, S.G., Phys. Rev. B34, 768 (1986).Google Scholar
13. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
14. Payne, M. C., Joannopoulos, J. D., Allan, D.C., Teter, M.P. and Vanderbilt, D.H., Phys. Rev. Lett. 56, 2656 (1986).Google Scholar
15. Starkloff, Th. and Joannopoulos, J.D., Phys. Rev. B16, 5212 (1977).Google Scholar
16. Perdew, P. and Zunger, A., Phys. Rev. B23, 5048 (1981).Google Scholar
17. Monkhorst, H. J. and Pack, J.D., Phys. Rev. B13, 5188 (1976).CrossRefGoogle Scholar
18. Bacmann, J.J., Silvestre, G., Petit, M. and Bollmann, W., Phil. Mag. A43 189 (1981).Google Scholar
19. Pond, R.C., Inst. Phys. Conf. Ser. No. 67, 59 (1983).Google Scholar
20. Bristowe, P.D. and Crocker, A.G., Phil. Mag. A38, 487 (1978).Google Scholar
21. Budai, J., Bristowe, P.D. and Sass, S.L., Acta Metall. 31, 699 (1983).Google Scholar