Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-27T23:33:16.371Z Has data issue: false hasContentIssue false

Theoretical Investigation of The Defect Interactions in Dilute Copper Alloys Intended for Nuclear Waste Containers

Published online by Cambridge University Press:  10 February 2011

P. A. Korzhavyi
Affiliation:
Condensed Matter Theory Group, Physics Department, Uppsala University S-75121 Uppsala, Sweden
I. A. Abriikosov
Affiliation:
Condensed Matter Theory Group, Physics Department, Uppsala University S-75121 Uppsala, Sweden
B. Johansson
Affiliation:
Condensed Matter Theory Group, Physics Department, Uppsala University S-75121 Uppsala, Sweden
Get access

Abstract

Application of pure, oxygen-free copper as a construction material having excllent corrosion resistance is limited because of the effect of intergranular emnibrittleinent at temperatures above 100–150°C. Dilute copper alloys containing S, P, and Ag inpirities and vacancies are studied theoretically on the basis of total energy calculations. The dissolution energies, volunie misfits, and defect interaction energies are calculated and used to study the microscopic miechanisin behind the effect of these impurities on the eiibrittlenieiit of colpper at interinedia temiperatures. A large linding energy of a sulfur-vacancy defect pair (–0.46 eV) is found. The sulfur-vacancy and sulftir-sulftir interactions in the copper matrix seeni to favor precipitation of copper sulphide Cu2S which is the most probable cause of the einhrittleiieiit. The effect of phosphorus and silver ilmpurities on the einbrittlement of sulfiir-contaminated copper can he related to their competition with sulfuir to attract to vacancies as well as to other lattice defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Butrmm-Guillen, M. P., Cabanmis-Moremno, J. G., and Weertman, J. R-, Smripita Metall. 24, 991 (1990).Google Scholar
[2] Henderson, P. J., Österberg, J. O., and Ivarsson, B., Technical ‘Ieport TR 92-04 (SKB, Stockholm, 1992).Google Scholar
[3] Fujivara, S. and Abiko, K., Journal de Physique IV (Collomlue) 5, 295 (1995).Google Scholar
[4] Chakrabarti, D. J. and Laughlin, D. E., in Binary Alloy Phase Diamgramcs, Second Edition, ed. by Massalski, T. B., (ASM International, 1990), 1). 1467.Google Scholar
[5] Smiart, J. S. and Smith, A. A., Trans. AIME 166, 144 (1946).Google Scholar
[6] Oudar, J., C. R. Acad. Sti. 249, 259 (1959).Google Scholar
[7] Van-Dyck, D., Conde-Aminano, C., and Ammmmdlinckx, S., Phmys. Stat. Sol. (a) 58, 451 (1980). 901Google Scholar
[8] Gray, J. N. and Clarke, R., Phys. Rev. B 33, 2056 (1986).Google Scholar
[9] Kashida, S. and Yanuamoto, K., J. Phys.: Condtens. Matter 3, 6559 (1991).Google Scholar
[10] Berger, R. and Btucur, R. V., Solid State Imiics 89, 269 (1996).Google Scholar
[11] Neumann, G. in Diffasion in Solid Metals and Alloys, ed. by Madelung, O., Landolt-Börnstein, , New Series, Group 111/26 (Springer-Verlag, Berlin, 1990) pp. 185187; I. Kaur and W. Gust, Diffasion in Solid Metals and Alloys, 1). 686.Google Scholar
[12] Surhuolt, T. and Herzig, Chur., Acta Mater. 45, 3817 (1997).Google Scholar
[13] Ehmrhuart, P. in Atottic Defects in Metals, ed. by Ulhinaier, H., Landolt-Börmisteimm, , New Series, Group 111/25 (Sprinmger-Verlag, Berlin, 1991) ph. 231240.Google Scholar
[14] Braspenning, P. J., Zeller, R., Dederichss, P. H., and Lodder, A., J. Phys. F: Metal. Phys. 12, 105 (1982).Google Scholar
[15] Mertig, I., Mrosamn, E., and Zieschme, P., Multiple scattering theory of point defects in metals: Electronic properties (Teubner Verlagsgeselshaft, Leipzig, 1987).Google Scholar
[16] Abrikosov, I. A., Vekilov, Yu. Kh., and Ruban, A. V., Russiamn Journal of Inorganic Chemistry 35, 11146 (1990); I. A. Abrikosov, Yu. Kh. Vekilov, A. V. Ruban, and S. I. Simak, Soviet Physics, Doklady 35, 961 (1990).Google Scholar
[17] Drittler, B., Weinert, M., Zeller, R., and Dederichs, P. H., Phys. Rev. B 39, 930 (1989).Google Scholar
[18] Stefanou, N., Papanikolaou, N., and Dederichs, P. H., J. Phys.: Condens. Matter 3, 8793 (1991).Google Scholar
[19] Klehmradt, U., Drittler, B., Hoshino, T., Zeller, R., Dederichms, P. H., and Stefanou, N., Phys. Rev. B 43, 9487 (1991).Google Scholar
[20] Hoshlimmo, T., Schweika, W., Zeller, R., and Dederichus, P. H., Phys. Rev. B 47, 5106 (1993).Google Scholar
[21] Dederichs, P. H., Drittler, B., Zeller, R. in Applications of Multiple Scattering Theory to Materials Science, edited by Butler, W. H., Dederichus, P. H., Gonis, A., and Weaver, R. L. (Mater. Res. Soc. Proc. 253, Pittsburgh, PA, 1992) pl. 185198.Google Scholar
[22] Papanikolaotu, N., Zeller, R., and Dederichus, P. H., Phys. Rev. B 55, 4157 (1997).Google Scholar
[23] Nicholson, D. M. C., Stocks, G. M., Wang, Y., Shelton, W. A., Szotek, Z., and Tenimermian, W. M., Phys. Rev. B 50, 14686 (1994).Google Scholar
[24] Abrikosov, I. A., Niklasson, A. M. N., Simak, S. I., Johiansson, B., Ruban, A. V., and Skriver, H. L., Phys. Rev. Lett. 76, 4203 (1996).Google Scholar
[25] Abrikosov, I. A., Simak, S. I., Johaumsson, B., Rubaum, A. V., and Skriver, H. L., Phys. Rev. B 56, 9319 (1997).Google Scholar
[26] Andersen, O. K., Phys. Rev. B 12, 3060 (1975).Google Scholar
[27] Gunumarsson, O., Jepsen, O., and Andersen, O. K., Phys. Rev. B 27, 7144 (1983).Google Scholar
[28] Skriver, H. L., The LMTO Method (Springer-Verlag, Berlin, 1984).Google Scholar
[29] Skriver, H. L. and Rosengaard, N. M., Phys. Rev. B 46, 7157 (1992).Google Scholar
[30] Korzhmavyi, P. A., Abrikosov, I. A., Johuansson, B., Ruban, A. V. and Skriver, H. L. (to be publishmed).Google Scholar
[31] Perdew, J and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
[32] Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
[33] Drittler, B., Weinert, M., Zeller, R., and Dederichus, P. H., Solid State Comm. 9, 31 (1991).Google Scholar
[34] Hultgren, R., Orr, R. L., Anderson, P. D., and Kelley, K. K., Selected Values of Thecrmnodynramic Properties of Metals and Alloys (John Wiley & Sons, New York, 1963), p. 363.Google Scholar
[35] Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamnon Press, London, 1958) pp. 26, 279, 594602.Google Scholar