Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T03:02:57.358Z Has data issue: false hasContentIssue false

Theoretical Investigation of the Band Alignment at the LaAlO3/SrTiO3 Interface

Published online by Cambridge University Press:  26 February 2011

Jaekwang Lee
Affiliation:
jk7895@physics.utexas.edu, The University of Texas, Department of Physics, 26th and Speedway, C1600, Austin, TX, 78712, United States
Alexander A. Demkov
Affiliation:
demkov@physics.utexas.edu, The University of Texas, Department of Physics, 26th and Speedway, C1600, Austin, TX, 78712, United States
Get access

Abstract

Epitaxially grown oxide superlattices are attracting considerable attention due to their unusual properties and possible applications ranging from sensors to electronic devices [1]. We report a first-principles study of interfaces in the epitaxial LaAlO3/SrTiO3 system within density functional theory. We consider the electronic structure of the n-type interface, and compute the band alignment

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uchino, K., in Ferroelectric Ceramics, edited by Swain, M., Cahn, R. W., Hassen, P., and Kramer, E. K. (VCH, Weinheim, 1994), p. 635.Google Scholar
2. Ohtomo, A. and Hwang, H. Y., Nature 427, 423 (2004).Google Scholar
3. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. and Hwang, H. Y., Nature 430, 657 (2004).Google Scholar
4. MO, Shang-Di, Ching, W. Y., Chisholm, M. F. and Duscher, G., Phys. Rev. B 60, 2416 (1999).Google Scholar
5. Piskunov, S., Heifets, E., Eglitis, R. I., Borstel, G., Comput. Mater. Sci. 29, 165 (2004)Google Scholar
6. Knizhnik, A. A., Ishkandarova, I. M., Bajatur'yants, A. A., Potaapkin, B. V., Fonseca, L. R. C., Korkin, A., Phys. Rev. B 72, 235329 (2005).Google Scholar
7. Demkov, A. A., Phys. Stat. Sol. (b) 226, 57 (2001).Google Scholar
8. Padilla, J. and Vanderbilt, D., Surf. Sci. 418, 64 (1998).Google Scholar
9. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864–B871 (1964).Google Scholar
10. Kohn, W. and Shan, L. J., Phys. Rev. 140 A1133–A1138 (1965).Google Scholar
11. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
12. Kresse, G. and Furhmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
13. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
14. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
15. Numerical Data and Functional Relations in Science and Technology-Crystal and Solid State Physics, edited by Mitsui, T. and Nouma, S., Landolt-Börnstein, New Series, Group III, Vol. 16, Pt. a (Springer, Berlin, 1982).Google Scholar
16. Ferroelectrics and Related Substances, edited by Hellwege, K. H. and Hellwege, A. M., Landolt-Börnstein, New Series, Group III, Vol. 3, (Springer Verlag Berlin, 1969).Google Scholar
17. Harrison, W. A., Electronic Structure and the Properties of Solids: The Physics of the Chemical bond (Dover Publications, INC., New York 1989).Google Scholar
18. Francis, R. J., Moss, S. C., and Jacobson, A. J., Phys. Rev. B 64, 235425 (2001).Google Scholar
19. Harrison, W. A., Kraut, E. A., Waldrop, J. R. and Grant, R. W., Phys. Rev. B 18, 4402 (1978).Google Scholar
20. Wang, Z. L. , Surf. Sci. 360, 180 (1996).Google Scholar
21. Bardeen, J., Phys. Rev. 71, 717 (1947).Google Scholar
22. Tersoff, J., Phys. Rev. B 32, 6968 (1985).Google Scholar
23. Tung, R. T., Phys. Rev. Lett. 84, 6078 (2000).Google Scholar
24. Bylander, D.M. and Kleinman, L., Phys. Rev. B 36, 3229 (1987).Google Scholar
25. Van de Walle, C.G. and Martin, R.M., Phys. Rev. B 39, 1871 (1989).Google Scholar
26. Van de Walle, C. G. and Martin, R. M., Phys. Rev. B 34, 5621 (1986).Google Scholar
27. Junquera, J., Zimmer, M., Ordejón, P., and Ghosez, P., Phys. Rev. B 67, 155327 (2003).Google Scholar