Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-14T05:44:34.270Z Has data issue: false hasContentIssue false

Theoretical Investigation of Implanted Dopant Diffusion From a Silicide Layer to the Silicon Wafer for Ultra Shallow P-N Junction Formation

Published online by Cambridge University Press:  15 February 2011

M. Sinder
Affiliation:
Ben - Gurion University of the Negev, Department of Materials Engineering, Beer Sheva, 84105, Israel.
J. Pelleg
Affiliation:
Ben - Gurion University of the Negev, Department of Materials Engineering, Beer Sheva, 84105, Israel.
Get access

Abstract

In this work a theoretical model is presented to analyze the technique recently suggested to form shallow p-n junction. According to this technique a silicide acts as a source of a dopant and it is followed by controlled diffusion anneal to accomplish the dopant penetration into a silicon wafer.

In our analysis the dependence of the p-n junction depth on process parameters is discussed. The model considers two cases, namely, with and without dopant evaporation.

Experimental data for B diffusion from CoSi2 acting as the source are used to evaluate our theoretical model. The agreement between theoretical and experimental results is satisfactory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Osburn, Carlton M., Reisman, A.. J. of Elect. Mat. 16, 223 (1987).Google Scholar
2 Shone, F. C., Saraswat, K. C. and Plummer, J. D.. IEDM Tech. Digest, 407 (1985); M. Horiuchi and K. Yamaguchi, IEEE Trans. Elkectron. Dévies, ED - 33, 260 (1986).Google Scholar
3 Jiang, H., Osburn, C. M., Smith, P., Xiao, Z. -G., Griffis, D., McGuire, G. and Rozgonyi, G. A.. J. Electrochem. Soc. 139, 196 (1992).Google Scholar
4 Jiang, H., Osburn, C. M., Xiao, Z. -G., McGuire, D. G., Rozgonyi, G. A., Patnaik, B., Parikh, N. and Svenson, M.. J. Electrochem. Soc. 139, 206 (1992).Google Scholar
5 Jiang, H., Osburn, C. M., Xiao, Z. -G., McGuire, G. and Rozgonyi, G. A.. J. Electrochem. Soc, 139, 211 (1992).Google Scholar
6 Cooper, C. B., Powell, R. A. and Chow, , J. Vac. Sci. Technol. B2(4), 718 (1982).Google Scholar
7 Murarka, S. P. and Williams, D. S., J. Vac. Sci. Technol. B5(6), 1674 (1987).Google Scholar
8 Wittmer, M., J. Electrochem. Soc. 135, 2049 (1988).Google Scholar
9 Fair, R. B., in Impurity Doping Processes in Silicon, edited by Wang, F. F. (Noth Holland, New York, 1981), p. 315. Google Scholar
10 Carslow, H. S. and Jaeger, J. C., Conduction of Heat in in Solids (Clarendon Press, Oxford, 1959).Google Scholar
11 Pelleg, J., Sinder, M., J. Appl. Phys., 76, 1511 (1994).Google Scholar