Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T09:24:18.488Z Has data issue: false hasContentIssue false

Theoretical and Experimental Studies on the C15 Intermetallic Compound NbCr2

Published online by Cambridge University Press:  22 February 2011

F. Chu
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
D. J. Thoma
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Y. He
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
T. E. Mitchell
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
S. P. Chen
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
J. H. Petepezki
Affiliation:
Dept. of Materials Sci. and Engr., University of Wisconsin, Madison, WI 53706, USA
Get access

Abstract

The electronic structure and total energy of the C15 NbCr2 phase have been calculated using the linear muffin-tin orbital (LMTO) method with the atomic sphere approximation (ASA). The total energy vs. volume curve, band structure, density of states and Fermi surface were obtained. The calculated results were used to examine several features of the C15 phase, including the elastic properties, phase formation and stability, and solubility range of the C15 phase. The theoretical results are compared to experimental studies on NbCr2 For example, the elastic moduli, phase stability, and homogeneity range have been determined with a variety of experimental techniques. Comparison of the experimental and theoretical results will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anton, D. L. and Shah, D. M., Mat. Res. Soc. Symp. Proc. 194, 45 (1990).Google Scholar
2. Fleischer, R., J. Mater. Sci. 22, 2281 (1987).Google Scholar
3. Livingston, J. D. and Hall, E. L., J. Mater. Res. 5, 5 (1990).Google Scholar
4. Thoma, D. J. and Perepezko, J. H., Mater. Sci. & Eng. A156, 97 (1992).Google Scholar
5. Takeyama, M. and Liu, C. T., Mater. Sci. & Eng., A132, 61 (1991).Google Scholar
6. Fu, C. L. and Yoo, M. H., Mater. Chem. & Phys., 32, 25 (1992).Google Scholar
7. Koelling, D. D. and Harmon, B. N., J. Phys. C10, 3107 (1975).Google Scholar
8. von Barth, U. and Hedin, L., J. Phys. C5, 1629 (1972).Google Scholar
9. Chu, F., Lei, Ming, Migliori, A., Chen, S. P. and Mitchell, T. E., Phil. Mag. B, 70, 867 (1994).Google Scholar
10. Izyumov, Yu. A., Naysh, V. Ye. and Syromyatnikov, V. N., Fiz. Metal. Metall. 39, 455 (1975).Google Scholar
11. Chu, F., Sob, M., Siegl, R., Mitchell, T. E., Pope, D. P. and Chen, S. P., Phil. Mag. B, 70, 881 (1994).Google Scholar
12. Balankin, A. S., Sov. Phys. Solid State 24, 2102 (1982).Google Scholar
13. Thoma, J. and Perepezko, J. H., Mat. Res. Soc. Symp. Proc. Vol. 194, 105 (1990).Google Scholar
14. Laves, F., in Theory of Alloy Phase, p. 123, (ASM, Cleveland, OH) (1956).Google Scholar