Skip to main content Accessibility help
×
Home

Theoretical and Experimental Analysis of the Low Dielectric Constant of Fluorinated Silica

  • A. Demkov (a1), R. Liu (a1), S. Zollner (a1), D. Werho (a1), M. Kottke (a1), R.B. Gregory (a1), M. Angyal (a1), S. Filipiak (a1), L.C. Mcintyre (a2) and M.D. Ashbaugh (a2)...

Abstract

Fluorinated silica has a dielectric constant E in the range of 3—3.5, lower than that of F-free SiO2 (ω=4). The reasons behind this reduction are controversial. It is not known whether the electronic or ionic contributions to the overall screening are being diminished upon F doping. To shed more light on this phenomenon we have studied F-doped SiO2 with ab-initio modeling and various characterization techniques. FTIR transmission and spectroscopic ellipsometry give us information about the ionic and electronic contributions to ω Nuclear reaction analysis and Auger spectrometry measure F composition. XPS and FTIR provide information on the atomic structure and stability of the film. We use a large cell of cristobalite to model fluorinated silica theoretically. The ground state geometry is obtained via energy minimization. We calculate the vibrational density of states and find a localized mode (Si-F stretch), in good agreement with FTIR transmission. We analyze the effects of F incorporation on the dielectric properties.

Copyright

References

Hide All
1. Lucovsky, G. and Yang, H., J. Vac. Sci. Technol. A 15, 1509 (1997).
2. Grill, A. et al. , in Low-Dielectric Constant Materials II, edited by Lagendijk, A., Treichel, H., Uram, K., and Jones, A. (Mater. Res. Soc., Pittsburgh, 1996), p. 155.
3. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., and Stucky, G.D., Adv. Mater. 10, 1380 (1998).
4. Yu, K.C. et al. , in Low-Dielectric Constant Materials V, Mater. Res. Soc. Proc. 565 (in print).
5. Wetzel, J. et al. , in Low-Dielectric Constant Materials, edited by Lu, T.-M., Murarka, S.P., Kuan, T.-S., and Ting, C.H. (Mater. Res. Soc., Pittsburgh, 1995) p.217.
6. Han, S.M. and Aydil, E., J. Vac. Sci. Technol. A 15, 2893 (1997).
7. Han, S.M. and Aydil, E., J. App. Phys. 83, 2172 (1998).
8. Hasegawa, S., Tsukaoka, T., Inokuma, T., Kurata, Y., J. Non-Crystalline Solids 240, 154 (1998).
9. Xu, Y.-N. and Ching, W.Y., Phys. Rev. B 44, 11048 (1991).
10. Demkov, A.A., Ortega, J., Sankey, O.F., and Grumbach, M., Phys Rev. B 52, 1618 (1995).
11. Sankey, O.F., Demkov, A.A., Windl, W., Fritsch, J.H., Lewis, J.P., Fuentes-Cabrera, M., Int. J. Quant. Chem. 69, 327 (1998).
12. Kim, K., Kwon, D.H., Nallapati, G., and Lee, G.S., J. Vac. Sci. Technol. A 16, 1509 (1998).
13. Yoshimary, M., Koizumi, S., and Shimokawa, K., J. Vac. Sci. Technol. A 15, 2908 (1997).
14. Cerius2 software, Molecular Simulations, Inc., San Diego, CA.

Theoretical and Experimental Analysis of the Low Dielectric Constant of Fluorinated Silica

  • A. Demkov (a1), R. Liu (a1), S. Zollner (a1), D. Werho (a1), M. Kottke (a1), R.B. Gregory (a1), M. Angyal (a1), S. Filipiak (a1), L.C. Mcintyre (a2) and M.D. Ashbaugh (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed