Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T20:13:53.287Z Has data issue: false hasContentIssue false

A TG/GC/MS Study of the Structural Transformation of Hybrid Gels Containing Si-H and Si-CH3 Groups into Oxycarbide Glasses

Published online by Cambridge University Press:  10 February 2011

G. D. Sorarù
Affiliation:
Dipartimento di Ingegneria dei Materiali, 38050 Trento, Italy, soraru@ing.unitn.it
R. Campostrini
Affiliation:
Dipartimento di Ingegneria dei Materiali, 38050 Trento, Italy, soraru@ing.unitn.it
G. D'andrea
Affiliation:
Dipartimento di Ingegneria dei Materiali, 38050 Trento, Italy, soraru@ing.unitn.it
S. Maurina
Affiliation:
Dipartimento di Ingegneria dei Materiali, 38050 Trento, Italy, soraru@ing.unitn.it
Get access

Abstract

The pyrolytic transformation of hybrid gels containing Si-CH3 and Si-H groups is studied with a novel TG/GC/MS technique. Pyrolysis of a gel precursor for SiOC system shows a main decomposition step with the evolution of many different silanes and siloxane species arising from redistribution of Si-H and Si-O bonds in the polymeric network. B-containing gel, precursor for SiBOC oxycarbide glasses, displays a dramatically different pyrolysis pathway in which the redistribution reactions are completely suppressed and the Si-H and Si-CH3 groups are partially consumed at low temperature (≈ 220°C) to form H2 and CH4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schmidt, H., J. Sol-Gel Sci. and Technol. 1, p. 217231 (1994).Google Scholar
2. Zhang, H. and Pantano, C. G., J. Am. Ceram. Soc. 73, p. 958–63 (1990).Google Scholar
3. Baney, R. H., Itoh, M., Sakakibara, A. and Suzuki, T., Chem. Rev. 95, p. 14091430 (1995).Google Scholar
4. Renlund, G. M., Prochazka, S. and Doremus, R. H., J. Mat. Res. 6, p. 2723–34 (1991).Google Scholar
5. Sorarù, G. D., Dallapiccola, E. and D'Andrea, G., J. Am. Ceram. Soc. 79, p. 000 (1996).Google Scholar
6. Babonneau, F., Soraru, G. D., D'Andrea, G., Dirè, S. and Bois, L., Mater. Res. Soc. Symp. Proc. 271, 789–94 (1992).Google Scholar
7. Sorarù, G. D., D'Andrea, G., Campostrini, R., Babonneau, F., Mariotto, G., J. Am. Ceram. Soc. 78, 379–87 (1995).Google Scholar
8. Bois, L., Maquet, J., Babonneau, F., Mutin, H. and Bahloul, D., Chem. Mater. 6, 796802 (1994).Google Scholar
9. Corriu, R. J. P., Leclerq, D., Mutin, P. H. and Vioux, A., in Better Ceramics Through Chemistry VI, edited by Cheetham, A. K., Brinker, C. J., Meacartney, M. L., Sanchez, C., (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), p. 351356.Google Scholar
10. Belot, V., Corriu, R. J. P., Leclerq, D., Mutin, P. H. and Vioux, A., J. Mater. Sci. Letter. 9, 10521054 (1990).Google Scholar
11. Belot, V., Corriu, R. J. P., Leclerq, D., Mutin, P. H. and Vioux, A., J. Polym. Sci., Poly. Chem. 30, 613623 (1992).Google Scholar
12. Campostrini, R., D'Andrea, G., Carturan, G., Ceccato, R. and Sorarù, G. D., J. Mater. Chem. 5, 000 (1996).Google Scholar
13. Nogami, M. and Moriya, Y., J. Non-Cryst. Sol. 48, 359366 (1982).Google Scholar