Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T06:18:37.333Z Has data issue: false hasContentIssue false

Templating Nanoporosity in Organosilicates Using Well-Defined Branched Macromolecules

Published online by Cambridge University Press:  10 February 2011

L. Hedrick*
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
C. J. Hawker*
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
M. Trollsås
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
J. Remenar
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
D. Y. Yoon
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
R. D. Miller
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
*
*Authors to whom all correspondence should be addressed
*Authors to whom all correspondence should be addressed
Get access

Abstract

A general route to organic-inorganic hybrids with nanophase morphologies has been elaborated with the objective of ultimately templating nanoporosity in organosilicates. A key feature of the hybrids is the preparation of well-defined macromolecules bearing significant functionality to interact with the organosilicates. The use of living polymerization methods allows the synthesis of polymers with accurate control of molecular weight, polydispersity, and chain ends. We have demonstrated living polymerizations from dendritic and hyperbranched initiators to produce controlled branched, star and hyperstar macromolecules. These polymers are used as structure directing agents to organize organosilicates into nanostructures. Once the macromolecular species has templated or organized the inorganic component, the organic polymer can be selectively removed by thermolysis to produce a nanoporous inorganic structure. The size and shape of the pores are similar to those of the initial hybrid morphology. A significant reduction in the dielectric constant of these insulating materials is achieved simply by replacing a portion of the glass matrix with air which has a dielectric constant of 1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tummala, R. R. and Rymaszewski, E. J., in Microelectronics Packaging Handbook (Van Nostrand Reinhold, New York, 1989a), Chap. 1.Google Scholar
2 Muraka, S. P., Solid State Technol, 83 (1986); S-P. Jang, R. H. Havemann and M. C. Chang in Advanced Metallization for Devices and Circuits-Science, Technology, and Manufacturability, edited by S. P. Muraka, A. Katz, K. N. Tu and K. Maex (Mater. Res. Soc. Symp. Proc. 337, Pittsburg, PA, 1994), p. 25; P. Singer, Semicond. Int., 88 (May 1996).Google Scholar
3 Brinker, D. J. and Scherrer, G. W., in Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
4 Scherrer, G. W., J. Non-Cryst. Solids 87, 199 (1986).10.1016/S0022-3093(86)80079-5Google Scholar
5 Charlier, Y., Hedrick, J. L., Russell, T. P., Volksen, W., Polymer 36, 987 (1995).10.1016/0032-3861(95)93599-HGoogle Scholar
6 Chujo, Y. and Saegusa, T., Adv. Polym. Sci. 100, 12 (1991); J. Wen and Wilkes, G. L., Chem. Mater. 8, 667 (1996); L. Mascia, Trends Polym. Sci. 3(2), 61 (1995).Google Scholar
7 Novak, B. M., Adv. Mater. 5, 422 (1993).10.1002/adma.19930050603Google Scholar
8 Hedrick, J. L., Hawker, C. J., Miller, R. D., Twieg, R., Srinivasan, S. A., Trollsgs, M., Macromolecules, in press.Google Scholar
9 (a) Johansson, M., Malmströnm, E., Hult, A., J. Polym. Sci.: Part A: Chem. Ed. 31, 619 (1993); (b) E. Mahnströnm, M. Johansson, A. Hult, Macromolecules 28, 1698 (1995); (c) H. Ihre, A. Hult, E. Soderlind, I. Anm Chem. Soc. 118, 6388 (1996).10.1002/pola.1993.080310304Google Scholar
10 Trollsås, M., Hedrick, J. L., Mecerreyes, D., Dubois, Ph., Jérôme, R., Ihre, H., Hult, A., Macromolecules 30, 8508 (1997).10.1021/ma970798fGoogle Scholar
11 Plage, B. and Schulter, H., Macromolecules 23, 2642 (1990).10.1021/ma00212a008Google Scholar
12 Lofgreen, A., Albertsson, A.-C., Dubois, P., Jérôme, R., Rev. Macromol. Chem. Phys. C35(3), 379418 (1995).10.1080/15321799508014594Google Scholar
13 Trollsås, M., Hawker, C., Remenar, J., Hedrick, J. L., Ihre, H., Hult, A., J. Polym. Sci.: Poly. Chem. Ed., submitted (1998).Google Scholar
14 Moore, J. S. and Stupp, S. I., Macromolecules 23, 65 (1990).10.1021/ma00203a013Google Scholar
15 Trollsås, M. and Hedrick, J. L., Macromolecules, submitted (1998).Google Scholar
16 Remenar, J., Hawker, C. J., Hedrick, J. L., Miller, R. D., Yoon, D. Y., Kim, S. M., Trollsis, M., Polymer Preprints 39(1), 631 (1998).Google Scholar