Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T09:59:48.531Z Has data issue: false hasContentIssue false

Temperature Dependent Raman Scattering in CsTiOAsO4 Single Crystal

Published online by Cambridge University Press:  21 February 2011

A.R. Guo
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931-3343
C.-S. Tu
Affiliation:
Department of Physics, Fu-Jen University, Taipei, Taiwan.
Ruiwu Tao
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931-3343
R.S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931-3343
Ruyan Guo
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
A.S. Bhalla
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The longitudinal (LO) and transverse (TO) A1 vibrational modes have been measured between 30-1200 cm−1 as a function of temperature (30–1240 K) for CsTiOAsO4 (CTA). The frequencies for all corresponding Raman components shifted to lower frequencies on increasing the temperature, however, there is no typical soft-mode like behavior observed in the measured frequency range. The relative intensities of the low frequency bands increase dramatically with increasing temperature due to high mobility of Cs+ ion. A higher symmetry structure taking place above 940K has been confirmed by changes in the phonon spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Marnier, G., Boulanger, B. and Menaert, B., J. Phys.: Condensed. Matter 1, 5509 (1989).Google Scholar
2 Loiacono, G.M., Loiacono, D.N. and Stolzenberger, R A., J. of Crystal Growth 131, 323 (1993).Google Scholar
3 Cheng, L.K., Cheng, L.-T., Bierlein, J.D., Zumsteg, F.C. and Ballman, A.A., Appi. Phys. Lett. 62, 346 (1993).Google Scholar
4 Bierlein, J.D., Vanherzeele, H. and Ballman, A.A., Appi. Phys. Lett. 54, 783 (1989).Google Scholar
5 Loiacono, G.M., Loiacono, D.N., Zola, J.J., Stolzenberger, R.A., McGee, T. and Norwood, R.G., Appl. Phys. Lett. 61, 895 (1992).Google Scholar
6 Farhi, R., Moch, P. and Pisarev, R.V., Phase Tansitions 33, 65 (1991).Google Scholar
7 Kugel, G.E., Bréhat, F., Wyncke, B., Fontana, M.D., Marnier, G., Carabatos, C. and Mangin, J., J. Phys. C: Solid State Phys. 21, 5565 (1988).Google Scholar
8 Furusawa, S., Hayasi, H., Ishibashi, Y., Miyamoto, A. and Sasaki, T., J. of the Phys. Soc. of Jap. 60, 2470 (1991).Google Scholar
9 Kourouklis, G A., Jayaraman, A. and Ballman, A.A., Solid State Commun. 62, 379 (1987).Google Scholar
10 Shaldin, Y.V. and Poprawski, R., Ferroelectrics 106, 399 (1990).Google Scholar
11 Ballman, A.A., Brown, H., Olson, D.H. and Rice, CE., J. Cryst. Growth 75, 390 (1986).Google Scholar
12 Ryan, J.F, Katiyar, R.S. and Taylor, W., Effet Raman Et Théorie, C2-49 .Google Scholar
13 Rousseau, D.L., Bauman, R.P. and Porto, S.P.S., J. of Raman Spectroscopy 10, 253 (1981).Google Scholar
14 Turrell, G., Infrared and Raman Spectra of Crystals, (Academic Press, 1972).Google Scholar
15 Ayyub, P., Multani, M.S., Palkar, V.R. and Viyayaraghavan, R., Phys. Rev. B 34, 8137 (1986).Google Scholar
16 Sugai, S., Phys. Rev. B 35, 3621 (1987).Google Scholar
17 Herzberg, G., Infrared and Raman Spectra of Polyatomic Molecules, (1975).Google Scholar
18 Farmer, V.C., The Infrared Spectra of Minerals, (London, Mineralogical Soc, 1974).Google Scholar