Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T04:54:15.306Z Has data issue: false hasContentIssue false

Temperature Dependent C-V Characteristics of YBCO/YSZ/Si MIS Capacitors

Published online by Cambridge University Press:  26 February 2011

Jianmin Qiao
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Eric M. Ajimine
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Paresh P. Patel
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Marco A. Segovia
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
Cary Y. Yang
Affiliation:
Microelectronics Laboratory, Santa Clara University, Santa Clara, CA 95053
David K. Fork
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Fernando A. Ponce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Joseph C. Tramontana
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

Metal-insulator-semiconductor capacitors are fabricated from a YBa2Cu3O7-δ (YBCOVYttria-Stabilized Zirconia(YSZ)/Si structure. Current-voltage(I-V) measurements reveal that thicker YBCO films(≤150Å) tend to result in more stable capacitors. Results of capacitance-voltage(C-V) measurements during bias-temperature cycling suggest the presence of a thermally activated process in the YSZ and/or YSZ/Si interface. This process is probably related to trapping/detrapping mechanisms in the SiOx, layer formed between YSZ and Si. It is shown that the distribution of mobile ions in YSZ can be “set” with biases at room temperature and then “frozen” by lowering the temperature, giving rise to adjustable threshold voltages at 80K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connell, G. A. N., Boyce, J. B. and Geballe, T. H., Appl. Phys. Lett, 57, 1161 (1990).Google Scholar
2 Harada, K., Fujimori, N. and Yazu, S., Jpn. J. Appl Phys, 27, L1524 (1988).Google Scholar
3 Komatsu, T., Tanaka, O., Matusita, K., Takata, M. and Yamashita, T., Jpn. J. Appl. Phys, 27, L1025 (1988).Google Scholar
4 Bruyere, J. C., Pluta, J., Brunei, M., Muret, P., Schwebel, C. and Gautherin, G., J. Less-Common Metals 151, 429 (1989).Google Scholar
5 Ajimine, E. M., Pagaduan, F. E., Rahman, M. M., Yang, C. Y., Inokawa, H., Fork, D. K. and Geballe, T. H., Appl. Phys. Lett, 59, 2889 (1991)Google Scholar
6 Lanagan, M. T., Mater. Lett, 7, 437 (1989).Google Scholar
7 Samara, G. A., J. Appl. Phys, 68, 4214 (1990).Google Scholar
8 Mizushima, K., Sagoi, M., Miura, T. and Yoshida, J., Appl. Phys. Lett., 52, 1101 (1988).Google Scholar
9 Fenner, D. B., Fork, D. K., Connell, G. A. N., Boyce, J. B., Viano, A. M. and Geballe, T. H., IEEE Trans. on Magnetic, 27, 958 (1991).Google Scholar
10 Fork, D. K., Fenner, D. B., Barrera, A., Philips, J. M., Geballe, J. M., Connell, G. A. N. and Boyce, J. B., IEEE Trans, on Appl. Supercond, 67 (1991).Google Scholar
11 de Dios Solier, J., Pérez-Jubindo, M A., Dominguez-Rodriguez, A. and Heuer, A. H., Commun. Am. Ceram. Soc, 72, 1500 (1989).Google Scholar
12 Ajimine, E. M., Qiao, J., Patel, P. P., Segovia, M. A., Yang, C. Y., Fork, D. K., Ponce, F. A. and Tramontana, J. C., To appear in the Proc. of 1992 Elec. Mater. Conf., Boston, 1992.Google Scholar
13 Pagaduan, F. E., Hamada, A., Yang, C. Y. and Takeda, E., Jpn. J. Appl. Phys, 28, L2047 (1989).Google Scholar
14 Deal, B. E., Sklar, M., Grove, A. S. and Snow, E. H., J. Electrochem. Soc, 114, 266 (1967).Google Scholar