Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T13:29:14.890Z Has data issue: false hasContentIssue false

Temperature Dependence of Photoresponse in p-Type GaAs/AlGaAs Multiple Quantum Wells: Theory and Experiment

Published online by Cambridge University Press:  10 February 2011

F. Szmulowicz
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433-7707, Frank.Szmulowicz@ml.afrl.af.mil
A. Shen
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KIA OR6, Canada
H. C. Liu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KIA OR6, Canada
G. J. Brown
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433-7707
Z. R. Wasilewski
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KIA OR6, Canada
M. Buchanan
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KIA OR6, Canada
Get access

Abstract

This paper describes a study of the photoresponse of long-wavelength (LWIR) and mid-infrared (MWIR) p-type GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) as a function of temperature and QWIP parameters. Using an 8x8 envelope-function model (EFA), we designed and calculated the optical absorption of several bound-to-continuum (BC) structures, with the optimum designs corresponding to the second light hole level (LH2) coincident with the top of the well. For the temperature-dependent study, one non-optimized LWIR and one optimized MWIR samples were grown by MBE and their photoresponse and absorption characteristics measured to test the theory. The theory shows that the placement of the LH2 resonance at the top of the well for the optimized sample and the presence of light-hole-like quasi-bound states within the heavy-hole continuum for the nonoptimized sample account for their markedly different thermal and polarization characteristics. In particular, the theory predicts that, for the LWIR sample, the LH-like quasi-bound states should lead to an increased Ppolarized photoresponse as a function of temperature. Our temperature dependent photoresponse measurements corroborate most of the theoretical findings with respect to the long-wavelength threshold, shape, and polarization and temperature dependence of the spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Levine, B. F.., Gunapala, S. D.., Kuo, J. M., Pei, S. S., and Hui, S., Appl. Phys. Lett. 59, 1864 (1991); J. M. Kuo, S. S. Pei, S. Hui, S. D. Gunapala., and B. F. Levine, J. Vac. Sci. Technol. B 10, 995 (1992).Google Scholar
2. Brown, G. J. and Szmulowicz, F., in Long Wavelength Infrared Detectors, edited by Razeghi, M. (Gordon&Breach, Philadelphia, 1996); F. Fenigstein, E. Finkman, G. Bahir, and S. E. Schacham, J. Appl. Phys. 78, 1998 (1994); J. Hoff, M. Razeghi, and G. Brown, Phys. Rev. B 54, 10 773 (1996); J. Hoff, X. He, M. Erdtmann, E. Bigan, and M. Razeghi, J. Appl. Phys. 78, 2126 (1996); J. Hoff, S. Kim, M. Erdtmann, R. Williams, J. Piotrowski, E. Bigan, and M. Razeghi, Appl. Phys. Lett. 78, 22 (1995).Google Scholar
3. Chang, Y. C. and James, R. B., Phys. Rev. B 39, 12672 (1989).Google Scholar
4. Man, P. and Pan, D. S., Appl. Phys. Lett. 72, 1539 (1992); D. Teng, C. Lee, and L. F. Eastman, J. Appl. Phys. 72, 1539 (1992); L. Tsang and S.-L. Chuang, IEEE J. Quant. Mech. 31, 20 (1995); M. Tadic and Z.Ikonic, Phys. Rev. B 52, 8266 (1995); M. Tadic and Z.Ikonic, Appl. Phys. Lett. 68, 994 (1996).Google Scholar
5. Shechter, G. and Shvartsman, L. D., Phys. Rev. B 58, 3941 (1998).Google Scholar
6. Allard, L.B., Liu, H.C., Buchanan, M., and Wasilewski, Z.R., Appl. Phys. Lett. 70, 2784 (1997).Google Scholar
7. Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures (Halstead, New York, 1988).Google Scholar
8. Alterelli, M., in Heterojunction and Semiconductor Superlattices, edited by Allen, G., Bastard, G., Baccora, N., and Voos, M. (Springer-Verlag, Berlin, 1986).Google Scholar
9. Szmulowicz, F. and Brown, G. J., Appl. Phys. Lett. 66, 1659 (1995); Phys. Rev. B 51, 13 203, (1995).Google Scholar
10. F, F. Szmulowicz, Phys. Rev. B 51, 1613 (1995); JETP Letters 60, 751 (1994)); [Pis'ma Zh. Eksp. Teor. Fiz. 60, No. 10, 731-735 (25 Nov. 1994)].Google Scholar
11. Liu, H. C., Li, L., Buchanan, M., Wasilewski, Z. R., Brown, G. J., Szmulowicz, F., and Hegde, S. M., J. Appl. Phys. 83, 585 (1998).Google Scholar
12. Liu, H. C., Szmulowicz, F., Wasilewski, Z. R., Buchanan, M., and Brown, G. J., J. Appl. Phys. 85, 2972, (1999).Google Scholar
13. Shen, A., Liu, H. C., Szmulowicz, F., Buchanan, M., Gao, M., Brown, G. J., and Ehret, J., J. Appl. Phys. 86, 5232 (1999).Google Scholar
14. Smith, D. L. and Mailhiot, C., Phys. Rev. B 33, 8345 (1986).Google Scholar
15.In the special directions technique for a two-dimensional Brillouin-zone integration, the integrand is expanded in terms of basis functions transforming according to the identity representation of the point group C4,. The leading term in this expansion is obtained from a summation over a special set of directions, which are chosen so that the summation of each basis function over the set equals zero. Then, the azimuthal integration of the integrand simply requires only the leading expansion term. Also, see Bansil, A., Solid State Commun. 16, 885 (1975), for a three-dimensional variant of the method.Google Scholar
16. Bandara, K. M. S, Coon, D. D., and O, B., Appl. Phys. Lett. 53, 1931 (1988).Google Scholar
17.The S- and P-polarization is defined here w.r.t. to the 45° facet geometry for which the S-polarization corresponds to light polarized in the xy plane (normal incidence) and the Ppolarized light is one-half xy- and one-half z-polarized.Google Scholar
18. Sánchez, A. D. and Proetto, C. R., J. Phys. C7, 2059 (1995).Google Scholar
19.The quantum efficiency is obtained by multiplying the total quantum well width (100 quantum wells times 31 Å) times the peak linear absorption (2600 cm−1) at 80K, which yields the figure of 8%.Google Scholar