Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T03:21:24.703Z Has data issue: false hasContentIssue false

Temperature Dependence of Ion Mixing Of Markers in Zr

Published online by Cambridge University Press:  28 February 2011

S. -J. Kim
Affiliation:
California Institute of Technology, Department of Electrical Engineering, Pasadena, CA 91125
M. -A. Nicolet
Affiliation:
California Institute of Technology, Department of Electrical Engineering, Pasadena, CA 91125
R. S. Averback
Affiliation:
Argonne National Laboratory, Material Science Division, Argonne, IL 60439 Department of Materials Science, University of Illinois Urbana-Champaign, Urbana, IL 61801
Get access

Abstract

Ion mixing of thin markers in Zr was investigated by irradiating with 660 keV Kr++ ions at temperatures between 300 to 423 K. Very thin films of vacuum evaporated Ti, Cr, Fe, Co, Ni, Cu+ Hf, W, and Au served as markers. The samples were analyzed by 2 MeV He backscattering spectrometry. The marker elements that are likely to dissolve interstitially in Zr have higher mixing efficiencies at elevated irradiation temperature than the markers that are likely to dissolve substitutionally. The results are explained by radiation-enhanced diffusion theory.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See e.g.Sigmund, P., and Gras-Marti, A., Nucl. Instr. and Meth. 168, 339 (1980); 182/183, 53 (1981).CrossRefGoogle Scholar
2. Peak, D., and Averback, R. S., Nucl. Instr. and Meth. B7/8, 561 (1985).CrossRefGoogle Scholar
3. Johnson, W. L., Cheng, Y.-T., Van Rossum, M., and Nicolet, M-A., Nucl. Instrum. Methods B7/8, 657 (1985).Google Scholar
4. Kim, S.-J., Nicolet, M-A., and Averback, R. S., presented at the 1986 Ion Beam Modification of Materials Meeting, Catania, Italy 1986.Google Scholar
5. Lomer, W. M., U.K.A.E.A. Report AERE–T/R–1540, 1954.Google Scholar
6. Dienes, G. J., and Damask, A. C., J. Appl. Phys., 29, 1713 (1958).CrossRefGoogle Scholar
7. Adda, Y., Beyeler, M., and Br~bec, G., Thin Solid Films 25, 107 (1975).Google Scholar
8. Cheng, Y.-T., Zhao, X.-A., Banwell, T., Workman, T. W., Nicolet, M-A., and Johnson, W. L., J. Appl. Phys., 60, 2615 (1986).Google Scholar
9. Biersack, J. P., and Haggmark, L. G., Nucl. Instrum. and Methods, 174, 257 (1980).Google Scholar
10. Kim, S.-J., Paine, B. M., Nicolet, M-A., and Averback, R. S., MRS Proceedings, Vol.54, Eds. Nemanich, R. J., Ho, P. S., and Lau, S. S., (1986) p. 237 Google Scholar
11. Hood, G. M., and Schultz, R. J., Acta Metall., 22, 459 (1974).Google Scholar
12. Smithells, C. J. (ed.) Metals Reference Book, 5th ed. (Butterworths, London, 1978).Google Scholar
13. Hood, G. M., J. Phys. F: Metal Phys., 8, 1677 (1978).CrossRefGoogle Scholar
14. Kim, S.-J., Nicolet, M-A., and Averback, R. S., to be published in Appl. Phys. A., 1986.Google Scholar
15. Acker, D., Beyer, M., Brebec, G., Bendazzoli, M., and Gilbert, J., J. Nucl. Mater., 50, 281 (1974).Google Scholar
16. Anttila, A., and Hautala, M., Appl. Phys., 19, 199 (1979).Google Scholar
17. Tendler, R., Santos, E., Abriata, J., and Varotto, C. F., Thermodynamics of Nuclear Materials, Vol.2 (IAEA, Vienna, 1975), p.71.Google Scholar
18. Anthony, T. R., Miller, J. W., and Turnbull, D., Scr. Metall. 3, 183 (1969).Google Scholar
19. Moore, R. H., Trans. Aime 233, 1064 (1965).Google Scholar