Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T08:16:37.161Z Has data issue: false hasContentIssue false

Temperature Dependence of Etch Rate and Residual Damage in Reactively Ion Etched GaAs and AlGaAs

Published online by Cambridge University Press:  25 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611
U. K. Chakabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
B. Emerson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
E. Lane
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. J. Vasile
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
N. M. Haegel
Affiliation:
UCLA, Los Angeles, CA 90024
Get access

Abstract

The etch rate of GaAs and AIGaAs during CC12F2:O2 reactive ion etching was measured over the temperature range 50–400ºC. For GaAs, the etch rate increases super-linearly from ∼400Å.min−1 to ∼3000Åmin−1 over this temperature range for a 0.56 W.cm−2, 4 mTorr discharge with a 19:1 CC12F2:O2 mixture. The surface morphology of GaAs undergoes a smooth-to-rough transition near 150ºC, and theresidual damage in the near-surface region appears to decrease with increasing etch temperature. The I-V characteristics of Schottky diodes fabricated on the etched surfaces show ideality factors of 1.001 for 150ºC RIE, although these worsen because of thermal degradation of higher etching temperatures. From AES and XPS data the etched GaAs shows little contamination after etching. In contrast, little temperature dependence of the etch rate of AIGaAs is observed using CC12F2:O2, although once again there is surface degradation for etching temperatures above 150ºC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tamura, H. and Kuritara, H., Jpn. J. Appl. Phys. 23, L731 (1988).CrossRefGoogle Scholar
2. Stern, M. B., Craighead, A. G., Liao, P. F. and Mankiewich, P. M., Appl. Phys. Lett. 45, 410 (1984).CrossRefGoogle Scholar
3. Cooper, C. B. III, Salimian, S. and MacMillan, H. F., Appl. Phys. Lett. 51, 2225 (1987).CrossRefGoogle Scholar
4. Scherer, A., Craighead, H. G. and Beebe, E. D., J. Vac. Sci. Technol. B5, 1599 (1987).CrossRefGoogle Scholar
5. Semura, S., Saitoh, H. and Asakawa, K., Proc. Symp. on Dry Process, ed. Nishizawa, J. (Inst. Electrical Engineers of Japan) pp. 6872, (1982).Google Scholar
6. Seaward, K. L., Moll, N. J., Coulman, D. J. and Stickle, W. F., J. Appl. Phys. 61, 2358 (1987).CrossRefGoogle Scholar
7. Contolini, R. L., J. Electrochem. Soc. 135, 929 (1988).CrossRefGoogle Scholar