Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T09:02:14.516Z Has data issue: false hasContentIssue false

Tem Assessment of Different Mechanisms Contributing to Stress Relaxation in Strained InGaAs/InAlAs Systems

Published online by Cambridge University Press:  25 February 2011

F. Peiro
Affiliation:
LCMM. Dept. Flstca Aplicada i Electrdnica.Univ. Barcelona.Diagonal 645–647. 08028 Barcelona, Spain Serveis Científico-Tècnics.Univ. Barcelona. Lluís Solé i Sabarís, 1–3. 08028 Barcelona, Spain
A. Cornet
Affiliation:
LCMM. Dept. Flstca Aplicada i Electrdnica.Univ. Barcelona.Diagonal 645–647. 08028 Barcelona, Spain
J.R. Morante
Affiliation:
LCMM. Dept. Flstca Aplicada i Electrdnica.Univ. Barcelona.Diagonal 645–647. 08028 Barcelona, Spain
S. A. Clark
Affiliation:
Dept. of Physics and Astronomy, Univ. of Wales, College of Cardiff. P.O. Box 913, Cardiff, Wales, U.K.
R.H. Williams
Affiliation:
Dept. of Physics and Astronomy, Univ. of Wales, College of Cardiff. P.O. Box 913, Cardiff, Wales, U.K.
Get access

Abstract

A study by Transmission Electron microscopy (TEM) of strained InGaAs/InAlAs systems on InP substrates is presented. The influence of the lattice mismatch, epilayer thickness and modulation of the lattice parameter on the morphology of the system is analyzed. A discussion of the strain relaxation mechanisms occurring for each growth morphology is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Matthews, J.M. Blakeslee, A.E., J. Cryst. Growth, 27, 118 (1974).Google Scholar
[2] Marée, P.M., Nakagawa, K., Mulders, F.M., Veen, J.F. van der, Surf. Sci., 191, 305 (1987).Google Scholar
[3] Mahajan, S., Shadid, M.A., Laughlin, D.E., Ins. Phys. Conf. Ser. 100, 143 (1989).Google Scholar
[4] Henoc, P., Izrael, A., Quillec, M., Launois, H., Appl. Phys. Letters 40, 963 (1982).Google Scholar
[5] Peiró, F., Cornet, A., Morante, J.R., Clark, S.A., Williams, R.H., Appl. Phys. Lett. 59, 1957 (1991).Google Scholar
[6] Westwood, D.I., Woolf, D.A., Williams, R.H., J. Crystal Growth, 98, 782 (1989).Google Scholar
[7] Marée, P.M.J., Barbour, J.C., Veen, J.F. van der, Kavanagh, K.L., BulleLieuwna, C.W.T., Viegers, M.P.A., J. Appi. Phys., 62, 4413 (1987).Google Scholar
[8] Breen, K.R., Uppal, P.N., Ahearn, J.S., J. Vac. Sci. Tech., B7, 758 (1989).Google Scholar
[9] Hagen, W., Strunk, H., Appl. Phys., 17, 85 (1978).Google Scholar
[10] Fox, B.A., Jesser, W.A., J. Appl. Phys., 68, 2739 (1990).Google Scholar
[11] People, R., Bean, J.C., Appl. Phys. Lett., 47, 322 (1985).Google Scholar
[12] Dodson, B.W., Tsao, J.Y., Appl. Phys. Lett., 51, 1325 (1987).Google Scholar
[13] Yao, J.Y., Anderson, T.G., Dunlop, G.L., J. Appl. Phys., 69, 2224 (1991).Google Scholar
[14] Peiré, F., Cornet, A., Morante, J.R., Clark, S., Williams, R., to be published in J. Cryst. Growth.Google Scholar
[15] Gendry, M., Drouot, V., Santinelli, G., Hollinger, G., to be published in Appl. Phys. Lett.Google Scholar
[16] Norman, A.G., Booker, G.R., J. Appl. Phys. 57, 4715 (1985).Google Scholar
[17] Treacy, M.M.J., Gibson, J.M., Howie, A., Philos. Mag. A, 51, 389 (1985).Google Scholar
[18] Glas, F., J. Appl. Phys., 62, 3204 (1987).Google Scholar
[19] Hull, R., Fischer-Colbie, A., Appl. Phys. Lett., 50, 851 (1987).Google Scholar
[20] Lee, H.P., Liu, X., Malloy, K., Wang, S., George, T., Weber, E.R., Weber, Z.L., J. of Electron. Mat., 20, 179 (1991)[19)Google Scholar
[21] Ernst, F., Pirouz, P., J.Appl. Phys., 64, 4526 (1988).Google Scholar