Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T22:50:04.823Z Has data issue: false hasContentIssue false

Tailoring Quantum Dot Saturable Absorber Mirrors for Ultra-Short Pulse Generation

Published online by Cambridge University Press:  01 February 2011

Matthew Lumb
Affiliation:
matthew.lumb@imperial.ac.uk, Imperial College London, Department of Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom, +44 (0)20 7594 7579, +44 (0)207 594 2077
Edmund Clarke
Affiliation:
edmund.clarke@imperial.ac.uk, Imperial College London, EXSS Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom
Dominic Farrell
Affiliation:
dominic.farrell00@imperial.ac.uk, Imperial College London, Photonics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom
Michael Damzen
Affiliation:
m.damzen@imperial.ac.uk, Imperial College London, Photonics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom
Ray Murray
Affiliation:
r.murray@imperial.ac.uk, Imperial College London, EXSS Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, United Kingdom
Get access

Abstract

We have designed and grown a series of quantum dot semiconductor saturable absorber mirrors (QD-SESAMs) for a range of operating wavelengths, incorporating innovative design and processing features to optimise the device performance. Using a range of reflectivity studies, ellipsometric measurements and both time-integrated and time-resolved spectroscopic studies, we have conducted detailed investigations of device performance. Extensive modelling work of dielectric multilayers has been undertaken which supports our experimental findings and allows us to understand and design novel structures in order to improve and tailor device characteristics, including dielectric capping and non-normal incidence. We demonstrate samples designed for operation with the higher excited-states of the QDs which produced a self-starting train of mode-locked pulses with a temporal duration of 200 ps at a repetition rate of 78 MHz in a Nd:YVO4 solid-state laser. We also present SESAMs incorporating electronically coupled QD bilayers, allowing long wavelength operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rafailov, E. U. White, S. J. Lagatsky, A. A. Miller, A. Sibbett, W. Livshits, D. A. Zhukov, A. E., and Ustinov, V. M. Photonics Technology Letters, IEEE 16 (11), 2439 (2004).Google Scholar
2. Su, K. W. Lai, H. C. Li, A. Chen, Y. F. and Huang, K. E. Optics Letters 30 (12), 1482 (2005).Google Scholar
3. Lagatsky, A. A. Bain, F. M. Brown, C. T. A. Sibbett, W. Livshits, D. A. Erbert, G. and Rafailov, E. U. Applied Physics Letters 91 (23) (2007).Google Scholar
4. Scurtescu, C. Applied physics. B, Lasers and Optics 87 (4), 671 (2007).Google Scholar
5. Borri, P. Schneider, S. Langbein, W. Woggon, U. Zhukov, A. E. Ustinov, V. M. Ledentsov, N. N., Alferov, Z. I. Ouyang, D. and Bimberg, D. Applied Physics Letters 79 (16), 2633 (2001).Google Scholar
6. Ru, E. C. Le, Howe, P. Jones, T. S. and Murray, R. Physical Review B 67 (16) (2003).Google Scholar
7. Keller, U. Weingarten, K. J. Kartner, F. X. Kopf, D. Braun, B. Jung, I. D. Fluck, R. Honninger, C., Matuschek, N. and Au, J. Aus der, IEEE J. of Sel. Top. in Quant. Elect., 2 (3), 435 (1996).Google Scholar
8. Siegman, A. Lasers. (University Science, Mill Valley, California, 1986).Google Scholar
9. Kopf, D. Zhang, G. Fluck, R. Moser, M. and Keller, U. Optics Letters 21 (7), 486 (1996).Google Scholar
10. Farrell, D. Optics Express 15 (8), 4781 (2007).Google Scholar
11. Abeles, F. Ann. d. Physique 3, 504 (1948).Google Scholar
12. Spuhler, G. J. Weingarten, K. J. Grange, R. Krainer, L. Haiml, M. Liverini, V. Golling, M., Schon, S. and Keller, U. Applied Physics B-Lasers and Optics 81 (1), 27 (2005).Google Scholar
13. McWilliam, A. Optics letters 31 (10), 1444 (2006).Google Scholar
14. Grundmann, M. and Bimberg, D. Physical Review B 55 (15), 9740 (1997).Google Scholar