Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T09:37:13.298Z Has data issue: false hasContentIssue false

Tailored Deposition by LPCVD of Non-stoichiometric Si Oxides and their Application in the Formation of Si Nanocrystals Embedded in SiO2 by Thermal Annealing

Published online by Cambridge University Press:  01 February 2011

Bruno Morana
Affiliation:
bmdb@etsit.upm.es, Universidad Politécnica de Madrid, E.T.S.I.T., Tecnología Electrónica, Madrid, 28040, Spain
Juan Carlos G. de Sande
Affiliation:
jcgsande@ics.upm.es, Universidad Politécnica de Madrid, E.U.I.T.T., I. Circuitos y Sistemas, Madrid, 28031, Spain
Andrés Rodríguez
Affiliation:
andres.rodriguez.dominguez@upm.es, Universidad Politécnica de Madrid, E.T.S.I.T., Tecnología Electrónica, Ciudad Universitaria s/n, Madrid, 28040, Spain
Jesús Sangrador
Affiliation:
jsangra@etsit.upm.es, Universidad Politécnica de Madrid, E.T.S.I.T., Tecnología Electrónica, Madrid, 28040, Spain
Tomás Rodríguez
Affiliation:
tomas@etsit.upm.es, Universidad Politécnica de Madrid, E.T.S.I.T., Tecnología Electrónica, Madrid, 28040, Spain
Manuel Avella
Affiliation:
manuel@fmc.uva.es, Univ. de Valladolid, E.T.S.I.I., Física de la Materia Condensada, Madrid, 47011, Spain
Ángel Carmelo Prieto
Affiliation:
acpc@fmc.uva.es, Univ. de Valladolid, E.T.S.I.I., Física de la Materia Condensada, Madrid, 47011, Spain
Juan Jiménez
Affiliation:
jimenez@fmc.uva.es, Univ. de Valladolid, E.T.S.I.I., Física de la Materia Condensada, Madrid, 47011, Spain
Get access

Abstract

Silicon oxide films with excess of Si were deposited by Low Pressure Chemical Vapor Deposition. The growth rate of the films and the excess of silicon in them have been modeled using a Face-centered Central Composite Design experiment. Samples annealed at 1100°C show luminescence (665 nm) at 80K and at room temperature associated to Si nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Aguilar, J. R., Monroy, G., Cárdenas, M., Contreras, G. S.. Materials Sci. Eng. C (2007). In press (available online).Google Scholar
2 Ross, G. G., Barba, D., Dahmoune, C., Wang, Y. Q., Martin, F.. Nucl. Instrum. and Meth. B 256, 211 (2007).Google Scholar
3 Montgomery, D. C.. Design and Analysis of Experiments (John Wiley & Sons, New York, 2001).Google Scholar
4 Ortiz, M. I., Sangrador, J., Rodríguez, A., Rodríguez, T., Kling, A., Franco, N., Barradas, N. P., Ballesteros, C.. Phys. Stat. Sol. (a) 203, 1284 (2006) and references therein.Google Scholar
5 Anderson, M. J., Whitcomb, P. J.. RSM Simplified (Productivity Press, New York, 2004).Google Scholar
6http://www.statease.com/Google Scholar
7 Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic, San Diego, CA, 1998).Google Scholar
8 Sande, J. C. G. de, Serna, R., Gonzalo, J., Afonso, C. N., Hole, D. E., and Naudon, A.. J. Appl. Phys. 91, 1536 (2002).Google Scholar
9 Rinnert, H., Vergnat, M., Marchal, G., Burneau, A.. Appl. Phys. Lett. 72, 3157 (1998).Google Scholar
10 Wu, X., Ossadnik, Ch., Eggs, Ch., Veprek, S., Phillipp, F.. J. Vac. Sci. Technol B 20, 1368 (2002).Google Scholar
11 Nishikawa, H., Watanabe, E., Ito, D., Sakurai, Y., Nagasawa, K., Ohki, Y.. J. Appl. Phys. 80, 3513 (1996).Google Scholar