Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T18:08:15.487Z Has data issue: false hasContentIssue false

Systematic Studies of Fullerene Derivative Electron Beam Resists

Published online by Cambridge University Press:  10 February 2011

A. P. G. Robinson
Affiliation:
Nanoscale Physics Research Laboratory, School of Physics and Astronomy, The University of Birmingham, Birmingham, UK, a.p.g.robinson@bham.ac.u.
R. E. Palmer
Affiliation:
Nanoscale Physics Research Laboratory, School of Physics and Astronomy, The University of Birmingham, Birmingham, UK, a.p.g.robinson@bham.ac.u.
T. Tada
Affiliation:
Joint Research Center for Atom Technology, NAIR, 1–1-4 Higashi, Tsukuba, Ibaraki 305–8562, Japan.
T. Kanayama
Affiliation:
Joint Research Center for Atom Technology, NAIR, 1–1-4 Higashi, Tsukuba, Ibaraki 305–8562, Japan.
E. J. Shelley
Affiliation:
School of Chemistry, The University of Birmingham, Birmingham, UK.
D. Philp
Affiliation:
School of Chemistry, The University of Birmingham, Birmingham, UK.
J. A. Preece
Affiliation:
School of Chemistry, The University of Birmingham, Birmingham, UK.
Get access

Abstract

We report systematic studies of the response of C60 derivatives to electron beam irradiation. Films of fourteen different mono, tris and tetra adduct methanofullerene C60 derivatives were produced by spin coating on hydrogen terminated silicon substrates. Exposure of the films to a 20 keV electron beam substantially altered the dissolution rate of the derivative films in organic solvents such as monochlorobenzene. All of the derivatives exhibited negative tone resist behaviour with sensitivities between ∼ 8.5 × 10-4 and ∼ 4 × 10-3 C/cm2 107, much higher than that of C60. Features with widths of ∼ 20 nm were produced using these compounds, and the etch ratios of the compounds were found to be more than twice those of a standard novolac based resist (SAL601).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N. and Ishikawa, H., Appl. Phys. Lett., 71, 193 (1997).Google Scholar
[2]Tang, Y., Ni, W.-X., Torres, C.M. Sotomayor and Hansson, G.V., Electronics Letters, 31, 1385 (1995).Google Scholar
[3]Smith, R.A. and Ahmed, H., Appl. Phys. Lett., 71, 3838 (1997).Google Scholar
[4]Ishikuro, H. and Hiramoto, T., Appl. Phys. Lett, 71, 3691 (1997).Google Scholar
[5]Peckerar, M.C., Perkins, F.K., Dobisz, E.A. and Glembocki, O.J., Handbook of Microlithography, Micromachining and Microfabrication Vol. I, Rai-Choudhury, P. ed., (IEE, London, 1997), p. 686.Google Scholar
[6]Rogers, J.A., Paul, K.E., Jackman, R.J. and Whitesides, G.M., Appl. Phys. Lett., 70, 2658 (1997).Google Scholar
[7]Yoshiiwa, M., Kageyama, H., Shirota, Y., Wakaya, F., Gamo, K. and Takai, M., Appl. Phys. Lett., 69, 2605 (1996).Google Scholar
[8]Fuijita, J., Ohnishi, Y., Ochiai, Y. and Matsui, S., Appl. Phys. Lett., 68, 1297 (1996).Google Scholar
[9]Fujita, J., Watanabe, H., Ochiai, Y., Manako, S., Tsai, J.S. and Matsui, S., Appl. Phys. Lett., 66, 3064 (1995).Google Scholar
[10]Tada, T. and Kanayama, T., Jpn. J. Appl. Phys., 35, L63 (1996).Google Scholar
[11]Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T. and Preece, J.A., Appl. Phys. Lett., 72, 1302 (1998).Google Scholar
[12]Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Preece, J.A., Philp, D., Jonas, U. and Deiderich, F., Chem. Phys. Lett., 289, 586 (1998).Google Scholar
[13]Tada, T., Kanayama, T., Robinson, A.P.G., Palmer, R.E. and Preece, J.A., J. Photopolymer Sci. Technol. 11, 581 (1997).Google Scholar
[14](MAFI and MAF6 wvere renamed THP3 and THP2 respectively, subsequent to [11] and [12])Google Scholar
[15]Robinson, A.P.G., PhD Thesis, The University of Birmingham, 2000.Google Scholar
[16]Manako, S., Fujita, J- I., Ochiai, Y., Nomura, E. and Matsui, S., Jpn. J. Appl. Phys, 36, 7773 (1997).Google Scholar
[17]Tada, T. and Kanayama, T., J. Vac. Sci. Technol. B, 13, 2801 (1995).Google Scholar
[18]Bethune, D.S., Meijer, G., Tang, W.C. and Rosen, H.J., Chem. Phys. Lett., 174, 219 (1990).Google Scholar
[19]Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes, (Academic Press, London, 1996) p. 851.Google Scholar
[20]Dewar, M.J.S. and Thiel, W., J. Am. Chem. Soc., 99, 4899 (1977).Google Scholar
[21]Stewart, J.J.P., J. Comp. Chem., 10, 209 (1989).Google Scholar
[22]Stewart, J.J.P., J. Comp. Chem., 10, 221 (1989).Google Scholar
[23]Krusic, P.J., Wasserman, E., Keizer, P.N., Morton, J.R and Preston, K.F., Science, 254, 1183 (1991).Google Scholar
[24]Budzikiewicz, H. and Djerassi, C., Mass Spectrometry of Organic Compounds, (Holden Day, San Francisco, 1967).Google Scholar
[25]McCord, M.A. and Rooks, M.J., Handbook of Microlithography, Micromachining and Microfabrication Vol. 1, P. Rai-Choudhury, ed., (lEE, London, 1997), p. 159.Google Scholar