Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T17:20:31.323Z Has data issue: false hasContentIssue false

Systematic Modification of Indium Tin Oxide to Enhance Diode Device Behavior

Published online by Cambridge University Press:  01 February 2011

Jing Guo
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544-1009
Norbert Koch
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Jeffrey Schwartz
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544-1009
Steven L. Bernasek
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544-1009
Get access

Abstract

Monolayers of tin complexes of phenoxide ligands spanning a range of dipole moments were prepared on the surface of ITO via simple metathesis reactions. They were characterized by quartz crystal microgravimetry (QCM) and a Kelvin probe. A nearly linear relationship was found between the measured ITO work functions and dipoles of the surface complexes. Measurements of current densities of diode devices built on surface modified ITO anodes were made, and a correlation was found between the total surface dipole per unit area and these current densities. Simple OLED devices were also constructed using these modified anodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Nüesch, F.; Forsythe, E. W.; Le, Q. T.; Gao, Y.; Rothberg, L. J. J. Appl. Phys. 2000, 87, 7973 Google Scholar
(2) Sugiyama, K.; Ishii, H.; Ouchi, Y.; Seki, K. J. Appl. Phys. 2000, 87, 295 Google Scholar
(3) Steuber, F.; Staudigel, J.; Stössel, M.; Simmerer, J.; Winnacker, A. Appl. Phys. Lett. 1999, 74, 3558 Google Scholar
(4) Choi, M. W.; Cho, K.; Sung, C.; Yang, J.; Noh, Y. Y. M.; Choi, J. C.; Jeong, K. J. Vac. Sci. Technol. B 2004, 22, 758 Google Scholar
(5) Tang, J. X.; Li, Y. Q.; Zheng, L. R.; Hung, L. S. J. Appl. Phys. 2004, 95, 4397 Google Scholar
(6) Ke, L.; Kumar, R. S.; Zhang, K.; Chua, S. J.; Wee, A. T. S. Synth. Met. 2004, 140, 295 Google Scholar
(7) Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mater. 1999, 11, 605 Google Scholar
(8) Ito, E.; Oji, H.; Furuta, M.; Ishii, H.; Oichi, K.; Ouchi, Y.; Seki, K. Synth. Met. 1999, 101, 654 Google Scholar
(9) Milliron, D. J.; Hill, I. G.; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys. 2000, 87, 572 Google Scholar
(10) Span, A. R.; Bruner, E. L.; Bernasek, S. L.; Schwartz, J. Langmuir 2001, 17, 948 Google Scholar
(11) Bruner, E. L.; Koch, N.; Span, A. R.; Bernasek, S. L.; Kahn, A.; Schwartz, J. J. Am. Chem. Soc. 2002, 124, 3192 Google Scholar
(12) Guo, J.; Koch, N.; Schwartz, J.; Bernasek, S. L. J. Phys. Chem. B 2005, 109, 3966 Google Scholar
(13) Carey, F. A. Organic Chemistry; 4th ed.; McGraw Hill Higher Education: Boston, 2000.Google Scholar
(14) Sauerbrey, G. Z. Phys. 1959, 155, 206 Google Scholar
(15) Christmann, K. Introduction to Surface Physical Chemistry; Springer-Verlag: New York, 1991 Google Scholar
(16) Khodabakhsh, S.; Poplavskyy, D.; Heutz, S.; Nelson, J.; Bradley, D. D. C.; Murata, H.; Jones, T. S. Adv. Funct. Mater. 2004, 14, 1205 Google Scholar