Skip to main content Accessibility help
×
Home

Systematic Analyses of Practical Problems Related to Defects and Metallic Impurities in Silicon

  • Y. Kitagawara (a1), H. Takeno (a2), S. Tobe (a2), Y. Hayam Izu (a2), T. Koide (a2) and T. Takenaka (a1)...

Abstract

Systematic approaches are introduced for (i) oxygen precipitation behavior, which is important for internal gettering, and (ii) segregation induced gettering behaviors of p/p+ epitaxial wafers and Poly-Si Back Seal (PBS) wafers. (i) Oxygen precipitation behavior during a whole sequence of a thermal process is predicted by a practical computer simulation technique involving a novel empirical function. The predicted oxygen precipitation behavior agrees with the corresponding experimental results reasonably well. (ii) For a systematic description of Fe segregation gettering, explicit expressions of the Fe segregation coefficients are obtained as functions of temperature and time. Using the determined expressions of the segregation coefficients and introducing diffusion dynamics, one can predict [Fe] behavior as a function of process time during a whole sequence of a thermal process. For both behaviors of(i) oxygen precipitation and (ii) segregation induced gettering, experimentally observed characteristics of a high-temperature process and a low-temperature process are well understood by aids of those simulations. (iii) For a high-sensitivity detection of an important heavy metal impurity Cu, we present a novel bulk impurity collection technique using a room-temperature Cu drift phenomenon accelerated by Corona charge showering on a Si wafer surface

Copyright

References

Hide All
1. Yamamoto, H. and Koyama, H., in The Science and Technology of Silicon Materials, edited by Sumino, K. (Proc. Kazusa Academia Forum, Nov. 12-14, 1997), p.237256.
2. Prigge, H., Gerlach, P., Hahn, P. O., Schnegg, A. and Jacob, H., J. Electrochem. Soc. 138, p. 13851389 (1991).
3. lizuka, T., Takasu, S., Tajima, M., Arai, T., Nozaki, T., Inoue, N. and Watanabe, M., J. Electrochem. Soc. 132, 1707 (1985).
4. Secco d'Aragona, F., J. Electrochem. Soc. 119, p. 948 (1972).
5. He, H., Li, Y., Xhao, G., Yan, R., Lu, Q., and Qi, M., Talanta 30, p. 761 (1983).
6. Takeno, H., Mizuno, M., Ushio, S. and Takenaka, T., Materials Science Forum, Vols. 196–201, ICDS-18, 1995, pp. 18651870.
7. Jenkins, M. W., J. Electrochem. Soc. 124, p. 754 (1977).
8. Moriya, K. and Ogawa, T., Jpn. J. Appl. Phys. 22, p. L207 (1983).
9. Hourai, M., Naridomi, T., Oka, Y., Murakami, K., Sumita, S., Fujino, N. and Shiraiwa, T., Jpn. J. Appl. Phys. 27, p. L2361 (1988).
10. Zoth, G. and Bergholz, W., J. Appl. Phys. 67, p. 6764 (1990).
11. UC Standard, ULTRA CLEAN TECHNOLOGY 8, p. 4482 (1996).
12. Gilles, D., Weber, E. R. and Hahn, S. K., Phys. Rev. Lett. 64, 196 (1990).
13. Kitagawara, Y., Hayamizu, Y., Koide, T., Takeno, H. and Yoshida, Y., in The Science and Technology of Silicon Materials, edited by Sumino, K. (Proc. Kazusa Academia Forum, Nov. 12-14, 1997), p. 273285.
14. Takeno, H., Otogawa, T. and Kitagawara, Y., J. Electrochem. Soc. 144, p. 4340 (1997).
15. Takeno, H., Aihara, K., Hayamizu, Y. and Kitagawara, Y., to be published in Semiconductor Silicon/I 1998, edited by Huff, H. R., Gbsele, U. M., and Tsuya, H., (The Electrochemical Society Proceedings Series, Pennington, NJ, 1998).
16. Sano, M., Sumita, S., Shigematsu, T. and Fujino, N., in Semiconductor Silicon/1994, edited by Huff, H. R., Bergholz, W., and Sumino, K., (The Electrochemical Society Proceedings Series, PV 94-10, Pennington, NJ, 1994), p. 784.
17. Kang, J. S. and Schroder, D. K., J. Appl. Phys. 65, p. 2974 (1989).
18. Aoki, M., Itakura, T. and Sasaki, N., Appl. Phys. Lett. 66, p. 2709 (1995).
19. Aoki, M., Hara, A. andOhsawa, A., J. Appl. Phys. 72, p. 895 (1992).
20. Lemke, H., Phys. Stat. Sol. (a) 64, p. 215 (1981).
21. Hayamizu, Y., Ushio, S. and Takenaka, T., in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by Ashok, S., Chevallier, J., Sumino, K., and Weber, E. (Materials Research Society Proceedings 262, Pittsburgh, PA, 1992), p. 1005.
22. Sano, M., Horai, M., Miyazaki, M., Fujino, N. and Shiraiwa, T., Jpn. J. Appl. Phys. 27, p. 1220 (1988).
23. Ogushi, S., Sadamitsu, S., Marsden, K., Koike, Y. and Sano, M., Jpn. J. Appl. Phys. 36, p. 6601 (1997).
24. Tobe, S. and Kitagawara, Y., in Extended Abstracts (Japan Soc. Appl. Phys. Autumn Meeting No. 1, 1996), 7p-ZG-12.
25. Hayamizu, Y., Tobe, S., Takeno, H. and Kitagawara, Y., to be published in Semiconductor Silicon/1998, edited by Huff, H. R., Gösele, U. M., and Tsuya, H., (The Electrochemical Society Proceedings Series, Pennington, NJ, 1998).
26. Yoshimi, T., Shabani, M. B., Okuuchi, S. and Shingyouji, T., in The Science and Technology of Silicon Materials, edited by Sumino, K. (Proc. Kazusa Academia Forum, Nov. 12-14, 1997), p.2534.
27. Heiser, T., McHugo, S., Hieslmair, H. and Weber, E. R., Appl. Phys. Lett. 70, p. 35763578 (1997).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed