Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-21T17:35:38.874Z Has data issue: false hasContentIssue false

The Synthesis, Structure and Property Behavior of Inorganic-Organic Hybrid Network Materials Prepared by The Sol Gel Process

Published online by Cambridge University Press:  21 February 2011

G.L. Wilkes
Affiliation:
Dept. of Chemical Engineering, Polymer Materials & Interfaces Laboratory, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061
A.B. Brennan
Affiliation:
Dept. of Chemical Engineering, Polymer Materials & Interfaces Laboratory, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061
Hao-Hsin Huang
Affiliation:
Dept. of Chemical Engineering, Polymer Materials & Interfaces Laboratory, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061
David Rodrigues
Affiliation:
Dept. of Chemical Engineering, Polymer Materials & Interfaces Laboratory, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061
Bing Wang
Affiliation:
Dept. of Chemical Engineering, Polymer Materials & Interfaces Laboratory, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061
Get access

Abstract

The synthesis, structure/property behavior of inorganic-organic hybrid network materials prepared by the sol gel process have been chronologically reviewed with emphasis on those systems prepared in the authors laboratory. Specific features of reactions as well as the nature of reactants are included. The morphological features of these “ceramer” systems formed have many features in common even though the reactants may be quite different. The mechanical properties of the final materials in conjunction with SAXS have proven beneficial in establishing the basics of their morphological texture. Finally, it is demonstrated how microwave radiation in some cases, can serve as an efficient way in processing the ceramer systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilkes, G. L., Orler, B. and Huang, H., Polymer Prepr. 26(2), 300 (1985).Google Scholar
2. Schmidt, H., Mate. Res. Soc. Symp. Proc. 32, 327 (1984).Google Scholar
3. Mark, J. E., Jiang, C. Y. and Tang, M. Y., Macromol., 17, 2613 (1984).Google Scholar
4. Schaefer, D. W. and Keefer, K. D., Mate. Res. Soc. Symp. Proc. 32, 1 (1984).Google Scholar
5. Huang, H., Orler, B. and Wilkes, G. L., Polym. Bull. 14, 557 (1985).Google Scholar
6. Huang, H., Orler, B. and Wilkes, G. L., Macromolecules 20(6), 1322 (1987).Google Scholar
7. Huang, H. and Wilkes, G. L., Polym. Prep. 28(2), 244, (1987).Google Scholar
8. Huang, H., Glaser, R. H. and Wilkes, G. L., ACS Symposium on “Inorganic and Organometallic Polymers”, 360, 354 (1987).Google Scholar
9. Huang, H. and Wilkes, G. L., Polym. Bull. 18, 455462 (1987).Google Scholar
10. Huang, H., Glaser, R. H., Brennan, A. B., Rodrigues, D. E. and Wilkes, G. L., Symposium on Ultrastructure Processing of Materials Tucson, 1989 in press.Google Scholar
11. Huang, H. and Wilkes, G. L., Polym. Prep. 30(2), 105106 (1989).Google Scholar
12. Wang, B., Huang, H. H., Brennan, A. B. and Wilkes, G. L., Polym. Prepr. 30(2), 146147 (1989).Google Scholar
13. Wang, B., Huang, H. H., Brennan, A. B. and Wilkes, G. L., Polym. Prepr. 30(2), 227228 (1989).Google Scholar
14. Wang, B., Brennan, A. B., Huang, H. and Wilkes, G. L., J. Appl. Polym. Sci. submitted.Google Scholar
15. Brennan, A. B. and Wilkes, G. L., In preparation.Google Scholar
16. Spinu, M., Brennan, A. B., Wilkes, G. L. and McGrath, J. E, Mat. Res. Symp. Polym. Based Mol. Comps. (1989).Google Scholar
17. Glaser, R. H., Wilkes, G. L. and Bronnimann, C. E., J. Non-Cryst. Solids submitted.Google Scholar
18. Noell, John Lee W., Wilkes, G. L., Mohanty, D. K., McGrath, J. E., J. Appl. Polym. Sci. submitted Google Scholar
19. Huang, H., Ph.D. Dissertation, Virginia Polytechnic Institute & State University, 1987.Google Scholar
20. Glaser, R. H., Ph.D. Dissertation, Virginia Polytechnic Institute & State University, 1988.Google Scholar
21. Schmidt, H., Scholze, H., Kaiser, A., J. Non-Cryst. Solids 63, 1 (1984).Google Scholar
22. Wang, B., Brennan, A. B., Huang, H., Rodrigues, D. and Wilkes, G. L., manuscript in preparation.Google Scholar
23. Wang, B. and Wilkes, G. L., manuscript in preparation.Google Scholar
24. Keefer, K. D., Mate. Res. Soc. Symp. Proc. 32, 15 (1984).Google Scholar
25. McCrum, N. G., Reed, B. E. and Williams, G., Anelastic and Dielectric Effects in Polymer Solids, John Wiley & Sons, London (1967).Google Scholar
26. Handbook of Physics and Chemistry, CRC Press, 68, B140 (1987).Google Scholar
27. Lewis, D. A., Ward, T. C., Summers, J. D. and McGrath, J. E., Polym. Prepr. 29(1), 174 (1988).Google Scholar
28. Metaxas, A. C. and Meredith, R. J., Industrial Microwave Heating, Peter Peregrinus Ltd., London (1988).Google Scholar
29. Rodrigues, D. and Wilkes, G. L., manuscript in preparation.Google Scholar